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Abstract For dynamical systems arising from chemical reaction networks, persis-
tence is the property that each species concentration remains positively bounded away
from zero, as long as species concentrations were all positive in the beginning. We
describe two graphical procedures for simplifying reaction networks without breaking
known necessary or sufficient conditions for persistence, by iteratively removing so-
called intermediates and catalysts from the network. The procedures are easy to apply
and, in many cases, lead to highly simplified network structures, such as monomolec-
ular networks. For specific classes of reaction networks, we show that these conditions
for persistence are equivalent to one another. Furthermore, they can also be character-
ized by easily checkable strong connectivity properties of a related graph. In particular,
this is the case for (conservative) monomolecular networks, as well as cascades of a
large class of post-translational modification systems (of which the MAPK cascade
and the n-site futile cycle are prominent examples). Since one of the aforementioned
sufficient conditions for persistence precludes the existence of boundary steady states,
our method also provides a graphical tool to check for that.
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1 Introduction

Since the seminal works of Horn, Jackson and Feinberg in the 70s (Feinberg 1980;
Gunawardena 2003; Horn and Jackson 1972; and references therein), chemical reac-
tion network theory (CRNT) has provided a fruitful framework to study the dynamical
systems describing how the concentrations of the involved chemical species evolve
over time.Of great interest has been the long-term behavior of these systems, for exam-
ple, whether they may exhibit oscillatory behavior (Feinberg 1987), local asymptotic
stability (Anderson 2008, 2011; Feinberg 1987; Gopalkrishnan et al. 2014; Sontag
2001), or persistence (Angeli et al. 2007, 2011; Craciun et al. 2013; Deshpande and
Gopalkrishnan 2014; Gnacadja 2011a, b; Gopalkrishnan et al. 2014).

Themathematical concept of persistencemodels the property that every species con-
centration remains above a certain threshold, as long as there were positive amounts of
each species in the beginning. Besides its intrinsic relevance to the applied sciences,
most notably in population biology (Smith and Thieme 2011), the concept of persis-
tence has also drawn attention in the context of CRNT on account of its connection
with the global attractor conjecture (Gopalkrishnan et al. 2014).

It can be difficult to determine if the solutions to a system of ordinary differen-
tial equations are persistent case by case. A recent contribution was given by Angeli
et al. (2007), who provided two checkable conditions, one sufficient, and the other one
necessary, for the persistence of conservative reaction networks. Their sufficient con-
ditions were further developed and relaxed by Deshpande and Gopalkrishnan (2014).
These criteria work under fairly general assumptions on the reaction kinetics. But
perhaps unsurprisingly, reaction networks become more difficult to analyze the larger
they are, often times exponentially so (Cordone et al. 2005). Thus, criteria for per-
sistence in terms of a simplified “skeleton” of the given network are desirable. More
importantly, simplified versions retaining the properties of interest of the original net-
workmay also give insight into the underlying biological mechanism, suggesting what
might be the leading causes of the presence (or absence) of said properties. For exam-
ple, for the class of post-translational modification (PTM) systems of Thomson and
Gunawardena (2009), or cascades of PTM systems, persistence can be characterized
in terms of strong connectedness of the underlying substrate network at each layer of
the cascade, as we shall see.

That is themotivation for ourmodel simplification approach to study persistence. In
this work we describe a process through which one may simplify a reaction network
by iteratively removing “intermediates” (Feliu and Wiuf 2013), and/or “catalysts”.
Intuitively speaking, an intermediate is a transient species appearing in the middle of a
chain of reactions. Catalysts, on the other hand, are reactants which remain unchanged
in every reaction, except possibly for interactions exclusively with other catalysts. Our
main contribution is to show that the removal of intermediates and/or catalysts does
not break the conditions for persistence given in Angeli et al. (2007) and Deshpande
and Gopalkrishnan (2014). Our main results in this work may be informally stated as
follows.
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Theorem 1 The conditions for persistence of reaction networks in Angeli et al. (2007)
and Deshpande and Gopalkrishnan (2014) are invariant under the removal of inter-
mediate species.

Theorem 2 The conditions for persistence of reaction networks in Angeli et al. (2007)
and Deshpande and Gopalkrishnan (2014) are invariant under the removal of cata-
lysts.

Theorem 3 The same minimally simplified reaction network is always obtained by
iteratively removing intermediates and catalysts until none can be found, indepen-
dently of the order in which they are removed.

As shown by various examples throughout this work taken from the systems biol-
ogy literature, reaction networks naturally exhibit many intermediate complexes and
catalysts. So, their removal will often reduce dramatically the size of the network,
facilitating its inspection for persistence. To illustrate this, consider a simple one-site
phosphorylation process, which can be modeled by the reaction network

E + S0 −⇀↽− ES0 −→ E + S1 F + S1 −⇀↽− FS1 −→ F + S0, (1)

where S0, S1 represent, respectively, the dephosphorylated and phosphorylated forms
of a substrate, E acts as a kinase, F acts as a phosphatase, and ES0 and FS1 are interme-
diate protein complexes in the phosphorylation/dephosphorylation mechanism. Using
our results, one may show that necessary or sufficient conditions for persistence for (1)
are a consequence of the same necessary or sufficient conditions for its much simpler
underlying substrate model,

S0 −⇀↽− S1. (2)

For monomolecular models such as (2), the necessary or sufficient conditions for
persistence are actually equivalent, and, furthermore, characterized by the strong con-
nectedness of each connected component. In fact, (1) will turn out to be a special case
of PTM system.

We emphasize that iteratively removing intermediates and catalysts—and, if even-
tually obtaining a monomolecular network, then checking it for strong connectedness
of its connected components—is essentially a graphical procedure.

This paper is organized as follows. In Sect. 2, we review the basic formalism of
reaction networks. We present the conditions for persistence in Angeli et al. (2007)
and Deshpande and Gopalkrishnan (2014) in the form we shall use in this work,
and discuss their relationship with boundary steady states. A few trivial but notable
examples we shall refer to several times throughout thework are given, and persistence
is characterized for monomolecular networks in terms of strong connectedness of
its connected components. In Sect. 3, we define the concepts of intermediates and
catalysts. We describe the networks obtained from their removal, and formally state
our main results (Theorems 1, 2, 3), concerning how these operations do not break the
aforementioned conditions for persistence. Some biologically relevant examples are
presented in Sect. 4, the most important of which being cascades of a class of PTM
systems. In Sect. 5 we return to our main results, giving the details of the proofs. A
short appendix with some auxiliary technical results is presented at the end.
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2 Reaction networks

In what follows we denote the set of nonnegative real (respectively, integer) numbers
by R�0 (respectively, Z�0), and denote the set of strictly positive real (respectively,
integer) numbers by R>0 (respectively, Z>0). We denote the boundary of the nonneg-
ative orthant by ∂R

n
�0. Given x ∈ R

n , for some n ∈ Z>0, we write x � 0 to mean
that x ∈ R

n
�0, that is, each coordinate of x is nonnegative. We write x > 0 to mean

that x � 0, and at least one coordinate of x is positive, and write x � 0 to mean that
x ∈ R

n
>0, in other words, each coordinate of x is strictly positive. For any finite set X ,

the notation |X | represents the number of elements of X . Given n ∈ Z>0, we write
[n] := {1, . . . , n}. By convention [0] := ∅.

2.1 Basic formalism

In this work we take the approach of defining reaction networks from their reaction
graphs. Thus, a reaction network is an ordered triple G = (S, C,R) in which S is a
finite, possibly empty set, C is a finite subset of R

n
�0, where n := |S|, and (C,R) is a

digraph with no self-loops. The set S is called the species set of the reaction network.
Its elements are tacitly assumed to be ordered in some fixed way, say,

S = {S1, . . . , Sn}.

We identify the elements (α1, . . . , αn) of C, called the complexes of the reaction
network, with the formal linear combinations of species

α1S1 + · · · + αn Sn .

The digraph (C,R) is called the reaction graph of G, and its edges are referred to
as the reactions of the network. We further assume that each complex takes part in
at least one reaction, and that each species is part of at least one complex. Formally,
this means that each vertex of (C,R) has indegree or outdegree at least one, and that
for each i ∈ [n], there exists (α1, . . . , αn) ∈ C such that αi > 0. It follows that
S = ∅ ⇔ C = ∅ ⇔ R = ∅, in which case the network is referred to as the empty
reaction network.

The reactions are also tacitly assumed to be ordered in some fixed way, say,

R = {R1, . . . , Rm},

wherem := |R|.Weoften express the reaction R j = (
(α1 j , . . . , αnj ), (α

′
1 j , . . . , α

′
nj )

)

as

R j :
n∑

i=1

αi j Si −→
n∑

i=1

α′
i j Si , j = 1, . . . ,m.
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The complex on the lefthand side is referred to as the reactant of the reaction, while
the complex on the righthand side is referred to as its product. The species Si such that
αi j > 0 are, accordingly, called the reactants of R j , while the species Si for which
α′
i j > 0 are called the products of the reaction.
A reaction path in G is a directed path in the digraph (C,R), that is, a sequence of

reactions

y0 → y1 → · · · → yk−1 → yk

such that y j−1 → y j ∈ R for all j ∈ [k] and all complexes are different. Similarly,
an undirected reaction path in G is a path in the undirected graph underlying (C,R).
In this case, we write y0 — y1 — · · · — yk , where each ‘—’ can either be ‘←’ or
‘→’ in (C,R). By abuse of terminology, we refer to the connected components of the
reaction graph (C,R) as the connected components of G.

With the above notation, we define the n × m matrix N ,

Ni j := α′
i j − αi j , i = 1, . . . , n, j = 1, . . . ,m,

known as the stoichiometric matrix of the network. The column-space of N , which is
a subset of R

n , is called the stoichiometric subspace of G, and denoted by Γ . The sets
(s0 + Γ ) ∩ R

n
�0, s0 ∈ R

n
�0, are called the stoichiometric compatibility classes of G.

Let

Q j := {i ∈ [n] | αi j > 0}, j = 1, . . . ,m,

be the subset of indices corresponding to the reactants of R j .
The system of differential equations governing the evolution of the concentrations

of the species of the network is given by

ds

dt
= Nr(s(t)), t � 0, s � 0, (3)

where r : R
n
�0 → R

m
�0 is a vector-valued function modeling the kinetic rates of each

reaction as functions of the reactant species, henceforth referred to simply as the vector
of reaction rates. We shall assume throughout this work that the vector of reaction
rates satisfies the following hypotheses:

(r1) r = (r1, . . . , rm) : O → R
m is continuously differentiable on a neighborhoodO

of R
n
�0, and r(s) � 0 for every s � 0.

(r2) For each j ∈ [m], and for each s = (s1, . . . , sn) ∈ R
n
�0,

r j (s) = 0 ⇔ si = 0 for some i ∈ Q j .

(r3) The flow of (3) is forward-complete; in other words, for any initial state, the
(unique) maximal solution of the corresponding initial value problem in (3) is
defined for all t � 0.

123



M. Marcondes de Freitas et al.

We note that (r1)–(r2) are satisfied under the most common kinetic assumptions in
the literature, namely, mass-action, or more general power-law kinetics, Michaelis–
Menten kinetics, or Hill kinetics, as well as combinations of these (Angeli et al. 2010,
pages 585–586). We also note that it follows from (r1) and (r2) that the non-negative
and positive orthants, Rn

�0 and R
n
>0, are forward invariant for the flow of (3) [see, for

instance, (Sontag 2001, Section VII) or (Amann 1990, Section 16)].
We will often give a reaction network by simply listing all the reactions in the

network. When we do so, the sets of species and complexes will be tacitly implied.
For instance,

G : S1 + S2 −⇀↽− S3 −→ S1 + S4

is the reaction network G = (S, C,R) obtained by setting

S := {S1, S2, S3, S4}, C := {S1 + S2, S3, S1 + S4}

and

R := {S1 + S2 → S3, S3 → S1 + S3, S3 → S1 + S4}

in the formalism above.

Definition 1 (Implied subnetworks) Let G = (S, C,R) be a reaction network, and
E ⊆ S be a subset of species. We define the subnetwork implied by E as the network
GE = (SE , CE ,RE ) consisting of reactions of G which involve exclusively species
in E . More precisely, RE ⊆ R is the subset of reactions

n∑

i=1

αi Si −→
n∑

i=1

α′
i Si

such that αi = α′
i = 0 for every i ∈ [n] such that Si /∈ E . We then define CE ⊆ C to

be the subset of complexes that appear as reactant or product of some reaction inRE .
Finally, SE ⊆ S is defined as the subset of species which are part of some complex in
CE .

Although it is always true that SE ⊆ E , it may be the case that SE 
= E . To see
this, consider the reaction network G with R = {S1 + S2 −→ S3 + S4, S4 −→ S2}
and set E := {S1, S2, S4}. Then GE consists of the reaction S4 −→ S2. In particular,
SE = {S2, S4} � {S1, S2, S4} = E .

2.2 Siphons, P- and T-semiflows, drainable sets and self-replicable sets

A few more concepts pertaining to reaction networks are needed. Some of the termi-
nology below is adapted from Petri net theory. See Angeli et al. (2007) for the context.
But since no results from Petri net theory itself are needed, we chose to define these
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concepts as directly pertaining to their respective reaction networks, rather than the
Petri nets associated with them.

Definition 2 (Siphons) A nonempty subset of species Σ ⊆ S is called a siphon if
every reaction which has a product in Σ also has a reactant in Σ . A siphon is said to
be minimal if it does not properly contain any other siphon.

Example 1 (Single phosphorylation mechanism) The minimal siphons of the single
phosphorylation mechanism from the Introduction (1) are {E, ES0}, {F, FS1}, and
{S0, S1, ES0, FS1}. ��
Remark 1 Let y → y1 → · · · → yk → y′ be a reaction path in a reaction network
G, and suppose Σ is a siphon containing some species S′ that is part of y′. Then each
of the complexes y, y1, . . . , yk must have at least one of its species in Σ .

Given a vector ω = (ω1, . . . , ωn) ∈ R
n
�0 associated with the species set S of a

reaction network G = (S, C,R), its support is defined to be the subset of species
suppω := {Si ∈ S | ωi > 0}. Similarly, given a vector v = (v1, . . . , vm) ∈ R

m
�0

associated with the reaction set R of G, its support is defined to be the subset of
reactions supp v := {R j ∈ R | v j > 0}. Although we use the same notation in both
cases, it will be clear from the context whether the underlying vector is associated
with the species or the reaction set.

Definition 3 (P- and T-semiflows) A P-semiflow or positive conservation law of a
reaction network is any nonzero vector ω ∈ R

n
�0 such that ωT N = 0. We say that a

reaction network is conservative if it has a strictly positive P-semiflow ω � 0, that is,
suppω = S. A T-semiflow of a reaction network is any nonzero vector v ∈ R

m
�0 such

that Nv = 0. We say that a reaction network is consistent if it has a strictly positive
T-semiflow v � 0, that is, if supp v = R.

Definition 4 (Siphon/P-semiflow property) We say that a reaction network has the
siphon/P-semiflow property if every siphon contains the support of a P-semiflow.

Nonempty sets of species not containing the support of a P-semiflow are also
known in the literature as critical (Deshpande andGopalkrishnan 2014). So, a reaction
network has the siphon/P-semiflow property if, and only if every siphon is noncritical.

Note that, since every siphon is either itself minimal, or else contains a minimal
siphon, we need only check whether every minimal siphon contains the support of a
P-semiflow. We give a couple more trivial examples. Besides further illustrating the
scope of the concepts just introduced, they will be used several times in the analysis
of more elaborate examples further down.

Example 2 (Empty networks)Our formalism allows for reaction networks to be empty.
Any such network is vacuously conservative, consistent, and also has the siphon/P-
semiflow property.

Example 3 (Inflows) Consider a reaction network G = (S, C,R). If one can find a
reaction path in G of the form

0 −→ y1 −→ · · · −→ yk,
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then byRemark 1, none of the species that are a part of any of the complexes y1, . . . , yk
belongs to a siphon because no species is part of the complex 0. This observation
may drastically reduce the number of species one is concerned about in checking the
siphon/P-semiflow property.

In particular, if G is such that 0 → S ∈ R for each S ∈ S, then G has no siphons.
In this case, G has vacuously the siphon/P-semiflow property.

We next introduce the concepts of drainable and self-replicable siphons. In Desh-
pande and Gopalkrishnan (2014), Definition 3.1(2–3), these concepts were defined in
terms of “G-reaction pathways”. We show in Proposition 6 in Sect. 1 in the appendix
that both definitions are equivalent. This equivalence is already implicitly used in the
proofs of the results in Deshpande and Gopalkrishnan (2014).

Definition 5 (Drainable and self-replicable sets) Let G = (S, C,R) be a reaction
network. A nonempty subset of species Σ ⊆ S is said to be drainable if there exists
a sequence of reactions y1 → y′

1, . . . , yk → y′
k ∈ R such that

⎛

⎝
k∑

j=1

(y′
j − y j )

⎞

⎠

i

< 0, ∀i ∈ [n] : Si ∈ Σ.

If there exists one such a sequence of reactions such that

⎛

⎝
k∑

j=1

(y′
j − y j )

⎞

⎠

i

> 0, ∀i ∈ [n] : Si ∈ Σ,

then Σ is said to be self-replicable. In either case, the reactions need not be pairwise
distinct.

We summarize some properties of critical, drainable and self-replicable siphons we
will need further down.

Proposition 1 Let G = (S, C,R) be a reaction network, and Σ ⊆ S a nonempty
subset. Then,

(i) if Σ is drainable or self-replicable, then it is critical; and
(ii) if Σ is a minimal critical siphon, then it is drainable or self-replicable.

Proof See Deshpande and Gopalkrishnan (2014), Theorem 5.3. ��
Corollary 1 A reaction network G has the siphon/P-semiflow property if and only if
G does not have any drainable or self-replicable siphons.

2.3 Persistence and boundary steady states

The existence of drainable siphons and the siphon/P-semiflow property are linked to
persistence and the existence of boundary steady states. The connection ismade precise
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in this subsection, where we compile results from Deshpande and Gopalkrishnan
(2014), Angeli et al. (2007) and Shiu and Sturmfels (2010).

Intuitively, persistence (of a reaction network) is the property that no species con-
centration goes below a certain threshold as the system evolves, as long as they were
initially all positive. This threshold may depend on the initial conditions though. In
order to formulate this more precisely, let σ : R�0 × R

n
�0 → R

n
�0 be the semiflow

of (3). In other words, for each initial state s0 ∈ R
n
�0, σ(·, s0) : R�0 → R

n
�0 is the

unique, solution of (3). The solution is unique in virtue of (r1), and defined for all
t � 0 on account of (r3).

Definition 6 (Persistence) A reaction network (3) is said to be persistent if

lim inf
t→∞ σi (t, s0) > 0, ∀i ∈ [n], (4)

for every initial state s0 � 0.

We also introduce a weaker notion of persistence. First, recall that, for each s0 � 0,
the ω-limit set of s0 is the set

ω(s0) :=
⋂

τ�0

⋃

t�τ

{σ(t, s0)}.

Note that s ∈ ω(s0) if, and only if there exists a sequence (tk)k∈N going to infinity in
R�0 such that

lim
k→∞ σ(tk, s0) = s.

Definition 7 (Bounded-persistence) A reaction network (3) is said to be bounded-
persistent if ω(s0) ∩ ∂R

n
�0 = ∅ for each s0 � 0.

A steady state of a reaction network G is any point s0 � 0 such that Nr(s0) = 0.

Definition 8 (Boundary steady state) A boundary steady state is any point s0 ∈ ∂R
n
�0

such that Nr(s0) = 0, in other words, any steady state that lies on the boundary.

In the following proposition we collect relationships among persistence, bounded-
persistence, consistence, drainable siphons and the siphon/P-semiflow property.
Details of the proof are given in Sect. 1 in the appendix.

Proposition 2 Consider a reaction network G.

(i) If G is persistent, then it is bounded-persistent.
(ii) If G is conservative and bounded-persistent, then it is persistent.
(iii) If G is conservative and persistent, then it is consistent.
(iv) If G has no drainable siphons, then it is bounded-persistent.
(v) If G has the siphon/P-semiflow property, then the stoichiometric compatibility

classes of G that are not entirely contained in the boundary do not contain any
boundary steady states.
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Conservative networks are a special case of dissipative networks (Definition 15), for
which bounded-persistence is also equivalent to persistence. These will be discussed
in Sect. 4.2.

Remark 2 In view of Corollary 1, if a reaction network has the siphon/P-semiflow
property, then it has no drainable siphons and therefore it is bounded-persistent by
Proposition 2(iv).

The next example shows that not having any drainable siphons is not in general a
necessary condition for the bounded-persistence of reaction networks.

Example 4 (Lotka–Volterra predator–prey model) The Lotka–Volterra equations,

dN

dt
= N (t)(a − bP(t))

dP

dt
= P(t)(cN (t) − d), (5)

where a, b, c, d are positive parameters, model the population sizes at time t � 0 of
a predator species, P(t), and its prey, N (t), under the assumptions that N (t) grows
exponentially in the absence of predators, P(t) decays exponentially in the absence of
prey, and that both the growth rate of P(t) and the depletion rate of N (t) on account
of predation are directly proportional to the population counts N (t) and P(t).

Equations (5) can be derived as (3) from the reaction network

N → 2N N + P → P N + P → N + 2P P → 0, (6)

under mass-action kinetics (see, for instance, Gunawardena 2003 for an account of
mass-action kinetics). Solutions of (5) are known to be uniformly bounded away from
zero. In fact, they are periodic (James 2002, Section 3.1). In particular, (6) is bounded-
persistent. However, the minimal siphons of (6) are {N } and {P}, both of which are
drainable on account of reactions N + P → P and P → 0, respectively.

Example 5 (Non-drainable siphons and boundary steady states) The absence of drain-
able siphons does not in general preclude boundary steady states in stoichiometric
compatibility classes that meet the interior of the positive orthant. For example, con-
sider the reaction network with the reaction

S → 2S.

This reaction network has one stoichiometric compatibility class, namely R�0, and a
boundary steady state. However, it has no drainable siphons.

2.4 Monomolecular networks

Iterating the simplification procedures discussed in this work will often result in what
we shall refer to as monomolecular networks. Intuitively, these are reaction networks
in which each reactant or product consists of at most a single species. The precise
definition is given below in Definition 9. For conservative monomolecular networks,
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the necessary and sufficient conditions for persistence given in Proposition 2(iii) and
(iv) are actually equivalent, and characterized by the strong connectedness of the
connected components of the network (Proposition 3).

Definition 9 (Monomolecular networks) A reaction network G = (S, C,R) is said
to be monomolecular if, for each y ∈ C, either y = 0 or y = Si for some i ∈ [n]. In
this case, we identify the nonzero ‘complexes’ of G with the corresponding ‘species.’

Proposition 3 Consider a monomolecular reaction network G = (S, C,R) and the
following seven properties.

(i) G is consistent.
(ii) Each connected component of G is strongly connected.
(iii) G has the siphon/P-semiflow property.
(iv) G has no drainable siphons.
(v) G is bounded-persistent.
(vi) G is persistent.

Then the following implications hold:

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇐ (vi).

If the reaction network is conservative, then the six properties are equivalent.

Proof Proposition 2 and Corollary 1 guarantee that (iii) ⇒ (iv) ⇒ (v) ⇐ (vi) for any
reaction network. Furthermore, (v) ⇒ (vi) ⇒ (i) for conservative networks, also by
Proposition 2.

Thus, it is sufficient to show that (i) ⇒ (ii) and (ii) ⇒ (iii) for arbitrary monomole-
cular networks.

(i) ⇒ (ii). Since G is consistent by hypothesis, there exists a strictly positive T-
semiflow v ∈ R

m
>0, that is Nv = 0. We prove below that v is in the kernel of the

incidence matrix of the reaction graph of G. Strong connectness of each connected
component of G then follows, for example, from (Feinberg 1995, Remark 6.1.1).

The incidence matrix CG of the reaction graph (C,R) has m columns and one
row for each complex. The entries of the j-th column, corresponding to a reaction
R j = y → y′, are all zero except for the entry corresponding to y, which is −1 and
the entry corresponding to y′, which is 1. If C = {S1, . . . , Sn}, then CG = N by
definition, hence CGv = 0. If C = {S1, . . . , Sn, 0}, then the first n rows of CG agree
with N . Since the sum of the rows of CG is zero, we have

(CG)n+1 · v = −
n∑

i=1

(CG)i · v = −
n∑

i=1

Ni · v = 0.

We conclude once again that CGv = 0.
(ii) ⇒ (iii). Let (C1,R1), . . . , (CJ ,RJ ) be the connected components of (C,R),

and denote the canonical basis of R
n by {e1, . . . , en}. Let j ∈ [J ]. We have two

possibilities.
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If 0 /∈ C j , then any siphon of G containing some species S′ ∈ C j contains C j .
Indeed, for any other S ∈ C j , there exists a reaction path connecting S to S′. Thus, S
belongs to any siphon containing S′. Furthermore,

∑

i : Si∈C j

ei

is a P-semiflow of G. This follows from the fact that, for each reaction S → S′ ∈ R j ,
the column of N corresponding to S → S′ has exactly two nonzero entries, namely,
a 1 in the row corresponding to S′, and a −1 in the row corresponding to S.

If 0 ∈ C j , then by strong connectedness, there is a reaction path from 0 to any
species S ∈ C j . By Example 3, S cannot belong to any siphon of G and thus C j

contains no siphons. We conclude that every siphon of G contains the support of a
P-semiflow. ��

The property that every connected component of the reaction graph is strongly
connected is also known in the literature as weak reversibility (see Gunawardena
2003, Definition 6.1). Thus, Proposition 3, as well as other results further down, could
well have been stated in these terms. In this work, the property of weak reversibility
only comes up in the context of monomolecular networks. Thus, we chose to use the
more informative, explicit description in terms of strong connectivity of the connected
components.

Example 6 (Persistence without conservativity) The hypothesis that the network is
conservative in Proposition 3 is not superfluous for the full equivalence of the six
statements. For example, the reaction network 0 → A with, say, mass-action kinetics
is persistent but not consistent and the implication (vii) ⇒ (i) does not hold.

3 Intermediates and catalysts

In this sectionwedefine the concepts of intermediate and catalyst of a reaction network.
We also describe the reaction networks that are obtained from their removal. After
establishing these concepts and underlying terminology in Sects. 3.1 and 3.2, we state
our main results in Sect. 3.3.

3.1 Intermediates

Consider a reaction network G = (S, C,R). Let Y be a nonempty subset of S, and
write

Y = {Y1, . . . ,Yp}, and S\Y = {S1, . . . , Sq}.

Consider the following two properties.

(I1) Each complex y ∈ C is either of the form y = α1S1 + · · · + αq Sq for some
α1, . . . , αq � 0, or of the form y = Yi for some i ∈ [p]. In particular, we
identify the ‘complexes’ and ‘species’ Y1, . . . ,Yp. (See also Definition 9).
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(I2) For each Y ∈ Y , there exist y, y′ ∈ C\Y , and reaction paths from y to Y and
from Y to y′ such that all their non-endpoints are in Y .

If (I1) and (I2) hold, then we may construct a reaction network G∗ = (S∗, C∗,R∗)
as follows. We define R∗ := R∗

c ∪ R∗
Y , where R∗

c ⊆ R is the set of reactions
y → y′ ∈ R such that y, y′ ∈ C\Y , and R∗

Y is constructed as the set of reactions
y → y′ such that y, y′ ∈ C\Y , y 
= y′, and there is a reaction path in G connecting
y to y′ such that all their non-endpoints are in Y . We set C∗ to be the set of reactant
and product complexes in the reactions in R∗, and we set S∗ to be the set of species
that are part of some complex in C∗. Note that S∗ does not always coincide with S\Y ,
as illustrated in Example 7 below. In the above description, we think of the reactant
and product sides of a reaction y → y′ ∈ R∗ as the formal linear combinations of
participating species alluded to before.

Definition 10 (Intermediates) Let G = (S, C,R) be a reaction network and Y be a
nonempty subset of S. We call Y a set of intermediate species of G, if (I1) and (I2)
hold. In this case, the reaction network G∗ = (S∗, C∗,R∗) defined as above is called
the reduction of G by the removal of the set of intermediates Y . The elements of Y
are then referred to as the intermediate species of G.

For brevity,wewill oftenwrite simply intermediates instead of intermediate species.

Example 7 (A ubiquitination model) Consider the following reaction network model
for Ring1B/Bmi1 ubiquitination (Nguyen et al. 2011).

B −⇀↽− Bd
ub H −⇀↽− Hub

B + R −⇀↽− Z −⇀↽− Zub −⇀↽− B + Ra
ub

Ra
ub

↓
Rub −⇀↽− R −⇀↽− Rd

ub

Note that

Y := {Bd
ub, H, Rub, R

d
ub, Z , Zub}

is a set of intermediate species of the network. This network can be reduced to

B + R −⇀↽− B + Ra
ub Ra

ub −→ R

by removing these intermediates and collapsing the paths in which they appear, as
described above.

We emphasize that S∗ does not always coincide with S\Y . In this example, Hub

is in S\Y , but not in S∗. We also note that the same network G∗ may arise from
removing a different set of intermediates. For instance, in this example, we could have
set Hub as an intermediate in place of H .
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Removing one intermediate at a time

In the proofs of some of our results concerning the removal of intermediates, we use
induction on the number of intermediates removed. Thus, a discussion of how the
intermediates in a set of intermediates may be iteratively removed, one at a time, is
warranted.

Let G = (S, C,R) be a reaction network, and suppose Y = {Y1, . . . , Yp} is a
set of intermediates of G. Set Gp := G. It follows directly from the definition that
any nonempty subset of Y is a set of intermediates of G. In particular, {Yp} is a
set of intermediates of Gp. Let Gp−1 be the reduction of Gp by the removal of the
set of intermediates {Yp}. Now {Y1, . . . ,Yp−1} is a set of intermediates of Gp−1.
In particular, {Yp−1} is a set of intermediates of Gp−1. We define Gp−2 to be the
reduction of Gp−1 by the removal of the set of intermediates {Yp−1}. Iterating this
process p times, we obtain a sequence Gp, . . . ,G1,G0 such that Gp = G, and Gi−1
is the reduction of Gi by the removal of the set of intermediates {Yi }, i = p, . . . , 1.

Lemma 1 If G, Y , and G p, . . . ,G1,G0 are like in the above construction, and G∗
is the reduction of G by the removal of the set of intermediates Y , then G0 = G∗.

Proof We use induction on p. The claim is trivial for p = 1. So, suppose it has been
proven to be true for the removal of up to p intermediates, for some p � 1. Let Y =
{Y1, . . . ,Yp,Yp+1} be a set of intermediates of G. As noted above, {Y2, . . . ,Yp+1} is
a set of intermediates of G. Let G∗

1 be the reduction of G obtained by their removal.
By the induction hypothesis, G∗

1 = G1, and so R∗
1 = R1. We want to show that

R0 = R∗.
R∗ ⊆ R0. Let y → y′ be any reaction in R∗. If y → y′ ∈ R, then y → y′ ∈ R∗

1,
and so y → y′ ∈ R0. So, suppose y → y′ /∈ R. Then there exist Y (1), . . . Y (�) ∈ Y
such that

y −→ Y (1) −→ · · · −→ Y (�) −→ y′

is a reaction path in G. If Y (1), . . . Y (�) ∈ {Y2, . . . ,Yp+1}, then y → y′ ∈ R∗
1, and

so y → y′ ∈ R0 like in the previous case. Otherwise, we have Y1 = Y (i) for some
i ∈ [�]. But now

y −→ Y1 −→ y′ (7)

is a reaction path in G∗
1, and so y → y′ ∈ R0 once again.

R0 ⊆ R∗. Let y → y′ be any reaction in R0. If y → y′ ∈ R∗
1, then there

exists a reaction path connecting y to y′ in G such that all its non-endpoints belong
to {Y2, . . . ,Yp+1}. In this case, y → y′ ∈ R∗. If y → y′ /∈ R∗

1, then (7) is a reaction
path inG∗

1. In this case there are reaction paths inG connecting y to Y1 and Y1 to y′, all
non-endpoints of which belong to {Y2, . . . ,Yp+1}. Concatenating these two reaction
paths we obtain a reaction path inG connecting y and y′ such that all its non-endpoints
belong to Y . It follows once again that y → y′ ∈ R∗. ��

123



Intermediates, catalysts, persistence, and boundary steady states

3.2 Catalysts

Consider a reaction network G = (S, C,R). Let E be a nonempty subset of S, and
write

E = {E1, . . . , Ep}, and S\E = {S1, . . . , Sq}.

Consider the following two properties.

(C1) For each reaction

q∑

i=1

αi Si +
p∑

i=1

βi Ei −→
q∑

i=1

α′
i Si +

p∑

i=1

β ′
i Ei

inR, we have

p∑

i=1

βi Ei =
p∑

i=1

β ′
i Ei or α1 = α′

1 = · · · = αq = α′
q = 0.

(C2) The subnetwork GE = (SE , CE ,RE ) implied by E (refer to Definition 1) has
no drainable or self-replicable siphons (equivalently, has the siphon/P-semiflow
property).

If (C1) and (C2) hold, then we may construct a reaction network G∗ = (S∗, C∗,R∗)
as follows. We set R∗ to be the set of reactions

q∑

i=1

αi Si −→
q∑

i=1

α′
i Si

such that

q∑

i=1

αi Si +
p∑

i=1

βi Ei −→
q∑

i=1

α′
i Si +

p∑

i=1

β ′
i Ei

belongs to R, and αi0 > 0 or α′
i0

> 0 for some i0 ∈ [q]. We then set C∗ to be the set
of reactants and products in these reactions, and set S∗ to be the set of species that
are part of some complex in C∗. Contrary to what happened with intermediates, S∗
always agrees with S\E .
Definition 11 (Catalysts) Let G = (S, C,R) be a reaction network and E be a non-
empty subset of S. We call E a set of catalysts of G if (C1) and (C2) hold. In this case,
the reaction network G∗ = (S∗, C∗,R∗) defined as above is called a reduction of G
by the removal of the set of catalysts E . The elements of E are then referred to as the
catalysts of G.
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Typically (C2) is checked via Proposition 3, by showing that GE is a monomolecu-
lar network and each connected component of its reaction graph is strongly connected,
as we shall see in some of the examples in the next section. However, the theory allows
for catalysts to interact in more complex, yet still biologically meaningful ways, for
instance, in reversible reactions of the forms

E1 + E2 −⇀↽− 2E3, E1 + E2 −⇀↽− E3 + E4, or 2E1 −⇀↽− E2.

Example 8 (A ubiquitination model (continued)) Consider the network

B + R −⇀↽− B + Ra
ub Ra

ub −→ R,

obtained from the ubiquitination model in Example 7 after intermediates were
removed. Note that E := {B} is a set of catalysts. Thus, this network can be fur-
ther reduced to

R −⇀↽− Ra
ub

by removing B and projecting the reactions as described above.
Note that B is not a catalyst of the original ubiquitination model in Example 7. In

realistic biochemical models, it is often the case that catalysts in the sense of Definition
11 only emerge after some intermediates are removed.

3.3 Main results

We are now ready to precisely restate Theorems 1, 2 and 3 in the introduction, and
consider a few examples. The proofs will be given in Sect. 5.

Theorem 1 (Removal of intermediates) Suppose a reaction network G∗ is obtained
from a reaction network G by the removal of a set of intermediates. Then,

(i) G has no drainable (respectively, self-replicable) siphons if, and only if G∗ has
no drainable (respectively, self-replicable) siphons;

(ii) G has the siphon/P-semiflowproperty if, andonly if G∗ has the siphon/P-semiflow
property;

(iii) G is consistent if, and only if G∗ is consistent; and
(iv) if G is conservative, then G∗ is conservative; conversely, if G∗ is conservative

and 0 /∈ C, then G is also conservative.

Theorem 2 (Removal of catalysts) Suppose a reaction network G∗ is obtained from
a reaction network G by the removal of a set of catalysts E . Then,
(i) G has no drainable (respectively, self-replicable) siphons if, and only if G∗ has

no drainable (respectively, self-replicable) siphons;
(ii) G has the siphon/P-semiflowproperty if, andonly if G∗ has the siphon/P-semiflow

property;
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(iii) if G is consistent, then G∗ is consistent; conversely, if G∗ is consistent and GE
is conservative, then G is consistent; and

(iv) if G is conservative, then G∗ is conservative; conversely, if G∗ is conservative
and GE is conservative, then G is conservative.

Combining Theorems 1 and 2 with Proposition 3 we obtain the following corollary.

Corollary 2 Suppose amonomolecular reaction network G∗ is obtained by iteratively
removing sets of intermediates and catalysts from a reaction network G. If each of
the connected components of G∗ is strongly connected, then G is bounded-persistent
and has no boundary steady states in any stoichiometric compatibility class that is not
contained in the boundary of the positive orthant. Furthermore, if G is conservative,
then G is persistent and consistent.

Definition 12 (Primitive networks) A reaction network G = (S, C,R) is said to be
primitive (with respect to the removal of catalysts or intermediates ) if no subset of S
is a set of catalysts or intermediates of G. If iteratively removing sets of intermediates
and catalysts of a reaction network G results in a primitive reaction network G∗, then
we refer to G∗ as a primitive reduction of G.

Theorem 3 (Uniqueness of the primitive reduction) Let G be a reaction network, and
suppose G∗

1 and G∗
2 are primitive reductions of G. Then G∗

1 = G∗
2.

Observe that Theorem 3 is more than just a theoretical curiosity. As noted in Exam-
ple 7, choosing a set of intermediates or catalysts to remove is not something that
can always be done in a unique way at each stage of the simplification process. Thus,
knowing that one would always obtain the same minimally simplified reaction net-
work regardless of the order in which catalysts and intermediates are removed has also
practical relevance.

Example 9 (A ubiquitination model (concluded)) The network

R −⇀↽− Ra
ub

is a strongly connectedmonomolecular network.ByCorollary 2, so long as the reaction
rates of the ubiquitination model from Example 7 satisfy our hypotheses, we conclude
that the network is persistent.

We emphasize that the procedures of removal of intermediates and catalysts car-
ried out in Examples 7 and 8, as well as the analysis of the emerging underlying
substrate network for strong connectedness in Example 9, are essentially graphical.
More specifically, one need not do any calculations with the stoichiometric matrix or
the reaction rates.

In Theorem 2(iii), the hypothesis that GE be conservative is not superfluous. If that
is not the case, then it might happen that G∗ is consistent and G is not, as shown in
Example 10 below. However, if G is consistent, then G∗ is consistent regardless of
whether GE is conservative or not, as shown later in Lemma 12.
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Example 10 (Non-conservative GE ) Consider the reaction network

G : A + E −⇀↽− B + E 0 −→ E .

The singleton E := {E} is a set of catalysts of G, the removal of which yields the
reaction network

G∗ : A −⇀↽− B.

By Proposition 3, G∗ is consistent. The stoichiometric matrix of G is

N =
⎡

⎣
−1 1 0
1 −1 0
0 0 1

⎤

⎦ .

AnyT-semiflowofGmust have its third coordinate equal to zero, soG is not consistent.

4 Examples

We shall apply Theorems 1 and 2 to twomain classes of reaction networks. In Sect. 4.1,
we give necessary and sufficient conditions for cascades of a class of post-translational
modification (PTM) systems to be persistent. The reaction network (1) in the introduc-
tion, as well as the ubiquitination model discussed in Examples 7, 8 and 9, will turn
out to be special cases of PTM systems. In Sect. 4.2, we argue that a nonconservative
reaction network may still be shown to be persistent when it has no drainable siphons
as long as it can be also shown to be dissipative. Finally, in Sect. 4.3, we apply our
results to a model of Wnt signaling that focuses on shuttling and degradation (Shiu
and Sturmfels 2010).

4.1 Cascades of PTM systems

In this subsection, we study the persistence of cascades of a class of PTM systems.
Combining Theorems 1 and 2 with Propositions 2, 3 and Corollary 1, we will achieve
necessary and sufficient conditions for persistence of cascades of PTM systems in
terms of strong connectedness of the connected components of the underlying substrate
network of each layer.

4.1.1 PTM systems

Consider a reaction network G = (S, C,R). Let

S = Enz ∪ Sub ∪ Int

be a partition of the species set. Thus, Enz, Sub, and Int are pairwise disjoint. Consider
the following properties.
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(M1) The reactions setR can be partitioned into a disjoint union of subsets

R = RSub � RSub+Enz � R→Int � RInt→ � RInt,

which are uniquely determined from the partition S = Enz ∪ Sub ∪ Int by the
inclusions

RSub ⊆ {S → S′ | S, S′ ∈ Sub},
RSub+Enz ⊆ {S + E → S′ + E | E ∈ Enz, and S, S′ ∈ Sub},

R→Int ⊆ {S + E → Y ′ | E ∈ Enz, S ∈ Sub, and Y ′ ∈ Int},
RInt→ ⊆ {Y → S′ + E | E ∈ Enz, S′ ∈ Sub, and Y ∈ Int},
RInt ⊆ {Y → Y ′ | Y,Y ′ ∈ Int}.

(M2) Int is either empty or a set of intermediates of G.
(M3) If

S + E −→ Y (1) −→ · · · −→ Y (�) −→ S′ + E ′

is a reaction path in G for some E, E ′ ∈ Enz, some S, S′ ∈ Sub, and some
Y (1), . . . ,Y (�) ∈ Int, then E = E ′.

Definition 13 (PTM systems) Let G = (S, C,R) be a reaction network, and let

S = Enz ∪ Sub ∪ Int

be a partition of the species set. We say that G is a PTM system with enzyme set Enz,
substrate set Sub, and intermediates set Int if it has properties (M1)–(M3) above.

LetG = (S, C,R)be aPTMsystem. If Int = ∅, then setG∗ = (S∗, C∗,R∗) := G.
Otherwise, let G∗ = (S∗, C∗,R∗) be the network obtained from G by the removal of
the set of intermediates Int. Thus,

R∗ = RSub ∪ RSub+Enz ∪ RY
Sub+Enz,

where RY
Sub+Enz is the set of reactions of the form S + E → S′ + E such that

S + E −→ Y (1) −→ · · · −→ Y (�) −→ S′ + E

is a reaction path in G for some E ∈ Enz, some S, S′ ∈ Sub such that S 
= S′, and
some Y (1), . . . ,Y (�) ∈ Int.

Now S∗ ⊆ Enz ∪ Sub, and Enz∗ := Enz ∩ S∗, if nonempty, is a set of catalysts
of G∗. Indeed, it follows directly from the form of the reactions that (C1) holds, and
the subnetwork of G∗ implied by Enz∗ is the empty network, so (C2) also holds.
If Enz∗ = ∅, then we set G∗∗ = (S∗∗, C∗∗,R∗∗) := G∗. Otherwise, let G∗∗ =
(S∗∗, C∗∗,R∗∗) be the network obtained fromG∗ by the removal of the set of catalysts
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Enz∗. Then G∗∗ is a monomolecular network consisting of the reactions S → S′ such
that S + αE → S′ + αE ∈ R∗ for some E ∈ Enz∗, some α ∈ {0, 1}, and some
S, S′ ∈ Sub such that S 
= S′. We refer to G∗∗ as the underlying substrate network of
G.

Regardless of whether Int or Enz are empty or nonempty, we shall abuse the ter-
minology and refer to the reaction network G∗ as the reaction network obtained from
G by the removal of the set of intermediates Int and to G∗∗ as the reaction network
obtained from G∗ by the removal of the set of catalysts Enz∗, for simplicity.

Note that G∗ and G∗∗ are themselves PTM systems with an empty set of interme-
diates and empty sets of intermediates and catalysts respectively.

By Thomson and Gunawardena (2009), Equations (16) and (17), any PTM system
is conservative (see also Lemma 2 below). In particular, persistence and bounded-
persistence are equivalent for PTM systems in view of Proposition 2.

Proposition 4 Let G be a PTM system. Then the following properties are equivalent.

(i) G is consistent.
(ii) Each connected component of the underlying substrate network G∗∗ is strongly

connected.
(iii) G has the siphon/P-semiflow property.
(iv) G has no drainable siphons.
(v) G is persistent.

Proof Using that G is conservative, Proposition 2 and Corollary 1 give the following
implications: (iii) ⇒ (iv) ⇒ (v) ⇒ (i). Thus, it is remains to show that (i) ⇒ (ii) ⇒
(iii).

(i) ⇒ (ii). It follows from Theorems 1(iii) and 2(iii) that G∗∗ is consistent. Since
G∗∗ is conservative, Proposition 3 gives that each connected component of G∗∗ is
strongly connected.

(ii) ⇒ (iii). By Proposition 3, G∗∗ has the siphon/P-semiflow property. It then
follows by Theorems 2(ii) and 1(ii), respectively, that G∗ and, consequently, G have
the siphon/P-semiflow property. ��
Remark 3 In view of Proposition 3, statement (ii) in Proposition 4 is equivalent to
each of the statements that the underlying substrate network G∗∗ of G is consistent,
has the siphon/P-semiflow property, has no drainable siphons, or is persistent. Thus,
either of these properties could also be checked to establish the persistence of G.

Example 11 (An n-site phosphorylation mechanism) The sequential and distributive
n-site phosphorylation mechanism given by

E + S0 −⇀↽− ES0 −→ · · · E + Sn−1 −⇀↽− ESn−1 −→ E + Sn

F + Sn −⇀↽− FSn −→ · · · F + S1 −⇀↽− FS1 −→ F + S0

is a PTM system with Int = {ES0, ES1, . . . , ESn−1, FSn, FSn−1, . . . , FS1}, Enz =
{E, F}, and Sub = {S0, S1, . . . , Sn}. The underlying substrate network is

S0 −⇀↽− S1 −⇀↽− · · · −⇀↽− Sn .
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It consists of a single strongly connected component, so the PTM system is persistent
by Proposition 4.

Example 12 Consider the PTM system

E + S0 −⇀↽− ES0 −→ E + S1.

The underlying substrate network, S0 −→ S1, is not strongly connected. We conclude
that the PTM system is not persistent.

4.1.2 Signaling cascades of PTM systems

We now discuss a formalism for cascades of PTM systems. Intuitively, a signaling
cascade of PTM systems is a reaction network that can be decomposed into a hierarchy
of PTM systems in such a way that substrates at a certain level, or layer, may act as
enzymes in lower levels (but not in higher levels).

Consider a reaction network G = (S, C,R), and write the species, complex and
reaction sets of the network as (not necessarily disjoint) unions,

S =
T⋃

i=1

Si , C =
T⋃

i=1

Ci , and R =
T⋃

i=1

Ri . (8)

Consider the following properties.

(F1) For each i ∈ [T ], Gi := (Si , Ci ,Ri ) is a PTM system with enzyme, substrate,
and intermediates sets, respectively, Enzi , Subi , and Inti .

(F2) Sub j ∩
⎛

⎝
j−1⋃

i=1

Subi

⎞

⎠ = ∅, j = 2, . . . , T .

(F3) Enz j ∩
⎛

⎝
j⋃

i=1

Subi

⎞

⎠ = ∅, j = 1, . . . , T .

(F4)

(
T⋃

i=1

Inti

)

∩
(

T⋃

i=1

(Enzi ∪ Subi )

)

= ∅.

Definition 14 (Signaling cascades of PTM systems) Let G = (S, C,R) be a reaction
network. We say thatG is a signaling cascade of PTM systems if there is a decomposi-
tion of the species, complex and reaction sets as in (8) that satisfy properties (F1)–(F4).
In this case, we set

Enz :=
T⋃

i=1

Enzi , Sub :=
T⋃

i=1

Subi , and Int :=
T⋃

i=1

Inti ,

and the PTM systems G1 = (S1, C1,R1), . . . , GT = (ST , CT ,RT ) are referred to as
the layers of the cascade.
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Remark 4 If G = (S, C,R) is a signaling cascade of PTM systems, then by (F1) and
(F4), the species set S can be partitioned into the two subsets Enz∪ Sub and Int. That
is, S = (Enz ∪ Sub) � Int. Furthermore, Int is a set of intermediates of G, provided
that it is nonempty.

Observe that (F3) implies that any enzyme that is a substrate in some layer may
appear in any layer below it, and not just the one immediately below the layer where
it acts as a substrate. Thus, the layer hierarchy implied in the definition of signaling
cascades of PTM systems may be a tree, in other words, it is not constrained to linear,
sequential relationships where each layer can only provide the layer immediately after
with enzymes.

Signaling cascades of PTM systems are always conservative.

Lemma 2 Any signaling cascade of PTM systems is conservative.

Proof Let G = (S, C,R) be a cascade of PTM systems. Write S = {S1, . . . , Sn}.
With the notation in Definition 14 and using Remark 4, for each i ∈ [n], set

ωi :=
{
1, if Si ∈ Enz ∪ Sub

2, if Si ∈ Int.

Then ω := (ω1, . . . , ωn) is a conservation law of G. This can be readily seen from the
possible forms a reaction in R may take. Since every entry of ω is strictly positive,
this means G is conservative. ��
Proposition 5 Let G be a signaling cascade of PTM systems. Then the following
properties are equivalent.

(i) G is consistent.
(ii) The connected components of the underlying substrate network of each layer of

G are strongly connected.
(iii) G has the siphon/P-semiflow property.
(iv) G has no drainable siphons.
(v) G is persistent.

The proof of Proposition 5 will be given in the next subsubsection.

Example 13 (Double phosphorylation cascade) Consider the concatenation of double
phosphorylation mechanisms from Example 11 given by the reaction network

E + S0 −⇀↽− ES0 −→ E + S1 −⇀↽− ES1 −→ E + S2
F1 + S2 −⇀↽− F1S2 −→ F1 + S1 −⇀↽− F1S1 −→ F1 + S0

S2 + P0 −⇀↽− S2P0 −→ S2 + P1 −⇀↽− S2P1 −→ S2 + P2
F2 + P2 −⇀↽− F2P2 −→ F2 + P1 −⇀↽− F2P1 −→ F2 + P0.

The double phosphorylation of a substrate S0 is catalyzed by a kinase E , and the
dephosphorylation of its singly and doubly phosphorylated forms is catalyzed by a
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phosphatase F1. The doubly phosphorylated form S2 of S0 then acts as a kinase in
a similar double phosphorylation/dephosphorilation mechanism for another substrate
P0. This is a signaling cascade of PTM systems with

Enz1 = {S2, F2}, Sub1 = {P0, P1, P2}, Int1 = {S2P0, S2P1, F2P2, F2P1},
Enz2 = {E, F1}, Sub2 = {S0, S1, S2}, Int2 = {ES0, ES1, F1S2, F1S1}.

Eachof the layers of the cascade coincideswith the double phosphorylationmechanism
in Example 11 with n = 2. In particular, Proposition 5(ii) holds, hence the network is
persistent.

In Gnacadja (2011b), the persistence of a class of cascades of PTM systems (there
called cascaded binary enzymatic networks) is studied under mass-action kinetics.
There is an overlap between the class of networks studied in Gnacadja (2011b) and
the class of cascades of PTMsystems considered here, although neither ismore general
than the other, nor do they agree. For instance, we allow for individual enzymes to take
part in reactions in more than one layer of the cascade. In Gnacadja (2011b), sufficient
conditions for a stronger concept of persistence (vacuous persistence) are given in
terms of the so-called futility of the network (Gnacadja 2011b, Theorem 6.7). For
conservative networks, vacuous persistence is equivalent to persistence together with
the absence of boundary steady states in the stoichiometric compatibility classes of G
that are not entirely contained in the boundary (Gnacadja 2011a, Proposition 5.2). In
view of Proposition 2(v) and Proposition 5, persistence of a cascade of PTM systems
in our setting is equivalent to vacuous persistence. Futility implies that the connected
components of the underlying substrate network of the cascaded PTM system are
strongly connected (Gnacadja 2011b, Remark 4.6). However, the condition is not
necessary for futility. Therefore, our results establish that, for the overlapping class of
cascades of PTM systems, strong connectedness of the components of the underlying
substrate network is also necessary for vacuous persistence. We also note that our
results are stated under more general kinetic assumptions.

4.1.3 Proof of Proposition 5

Since G is conservative, Proposition 2 and Corollary 1 give the implications (iii) ⇒
(iv) ⇒ (v) ⇒ (i).

It remains to prove (i) ⇒ (ii) and (ii) ⇒ (iii). We begin with a few simple observa-
tions about signaling cascades of PTM systems.

Let G be a signaling cascade of PTM systems with layers G1, . . . ,GT . If the set of
intermediates Int is nonempty, let G∗ be the reaction network obtained by its removal.
For each i ∈ [T ], let G∗

i be the reaction network obtained from Gi by the removal of
the set of intermediates Inti .

By the next lemma, we may assume without loss of generality that the cascade has
no intermediates.

Lemma 3 In the construction above, G∗ is a signaling cascade of PTM systems with
layers G∗

1, . . . ,G
∗
T . Furthermore,
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(i) G∗ has the siphon/P-semiflow property if, and only if G does also, and
(ii) G∗ is consistent if, and only if G is also.

Proof For each i ∈ [T ], set Sub∗
i := Subi ∩ S∗

i , Enz
∗
i := Enzi ∩ S∗

i , and Int∗i := ∅.
ThenG∗

i is a PTM systemwith enzyme, substrate, and intermediates sets, respectively,
Enz∗

i , Sub
∗
i , and Int∗i , thus satisfying (F1). Properties (F2) and (F3) are inherited

directly from G, and (F4) is trivial. This proves the first statement. Statements (i) and
(ii) then follow directly from Theorem 1(ii)–(iii). ��

Throughout the rest of this subsection, G = (S, C,R) will be assumed to be a
signaling cascade of PTM systems with an empty set of intermediates.

Next, let G− = (S−, C−,R−) be the reaction network with

S− :=
T−1⋃

i=1

Si C− :=
T−1⋃

i=1

Ci and R− :=
T−1⋃

i=1

Ri .

Set

Enz′
T := EnzT ∩

(
T−1⋃

i=1

Enzi

)

.

If Enz′
T 
= ∅, then it is a set of catalysts of G−. So, define G ′ to be the network

obtained from G− by the removal of the set of catalysts Enz′
T .

Lemma 4 In the construction above, G ′ is a cascade of PTM systemswith T−1 layers
G ′

1, . . . ,G
′
T . Furthermore, for each i ∈ [T − 1], the underlying substrate networks

of G ′
i and Gi coincide.

Proof For each i ∈ [T −1], defineR′
i to be the set of reactions S + αE → S′ +αE ∈

Ri such that S, S′ ∈ Subi , S 
= S′, E ∈ Enzi\EnzT , and α ∈ {0, 1}, plus the reactions
S → S′ such that S + E → S′ + E ∈ Ri for some S, S′ ∈ Subi , S 
= S′, and
E ∈ EnzT . Then define G ′

i = (S ′
i , C′

i ,R′
i ) to be the reaction network determined by

R′
i . We then have

S ′ =
T−1⋃

i=1

S ′
i , C′ =

T−1⋃

i=1

C′
i , and R′ =

T−1⋃

i=1

R′
i .

Now G ′
i is a PTM system with Enz′

i = Enzi\EnzT , Sub′
i = Subi , and Int′i = ∅,

i = 1, . . . , T − 1. Indeed, (M1) is fulfilled by construction, and (M2) and (M3) hold
vacuously. Thus, (F1) holds. Furthermore, properties (F2) and (F3) are inherited from
G, and (F4) is fulfilled vacuously. This showsG ′ is a signaling cascade of PTMsystems
with layers G ′

1, . . . ,G
′
T−1.

To establish the second statement, it is enough to show that (R′
i )

∗∗ = R∗∗
i , i =

1, . . . , T − 1. Let i ∈ [T − 1], and S → S′ ∈ (R′
i )

∗∗. Then, by construction,
S + αE → S′ + αE ∈ Ri for some S, S′ ∈ Subi , S 
= S′, E ∈ Enzi , and α ∈ {0, 1},
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and so S → S′ ∈ R∗∗
i . Conversely, if S → S′ ∈ R∗∗

i , then S + αE → S′ + αE ∈ Ri

for some S, S′ ∈ Subi , S 
= S′, E ∈ Enzi , and α ∈ {0, 1}. If E ∈ EnzT and α = 1,
then we get S → S′ ∈ R′

i by construction, and so S → S′ ∈ (R′
i )

∗∗. Otherwise,
S + αE → S′ + αE ∈ R′

i , and so S → S′ ∈ (R′
i )

∗∗ after the removal of catalysts.
��

Finally, let ĜT be the reaction network obtained from G by the removal of the
set of catalysts EnzT , and let G∗∗

T be the underlying substrate network of GT . Upon
ordering the species and reactions of ĜT in such a way that all species belonging to
SubT correspond to the bottom-most rows, and all monomolecular reactions between
species in SubT correspond to the right-most columns, the stoichiometric matrix of
ĜT may be written as

N̂T =
[
N ′ 0
0 N∗∗

T

]
, (9)

where N ′ is the stoichiometric matrix of the network G ′ introduced above, and N∗∗
T

is the stoichiometric matrix of G∗∗
T . This decomposition will be used in the proofs of

the next two results.
Proof of (i) ⇒ (ii) in Proposition 5. We use induction on the number T of layers. For
T = 1, this follows from Proposition 4.

Now suppose the result holds for cascades of PTM systems with T − 1 layers for
some T � 2, and letG be a cascadewith T layers. By Theorem 2(iii), ĜT is consistent.
So, there exists a v̂T � 0 such that N̂T v̂T = 0. We may write v̂T = (v′, v∗∗

T ), where
v′ corresponds to the reactions of G ′, and v∗∗

T corresponds to the reactions of G∗∗
T .

From (9), we obtain

N ′v′ = 0 and N∗∗
T v∗∗

T = 0,

concluding that G ′ and G∗∗
T are consistent. It follows by the inductive hypothesis,

Lemma 4, and Proposition 3 that G∗∗
1 , . . . ,G∗∗

T−1,G
∗∗
T , the underlying substrate net-

works of G1, . . . ,GT−1,GT , respectively, are such that their connected components
are strongly connected. This establishes the inductive step, proving the result. ��
Proof of (ii) ⇒ (iii) in Proposition 5. We use induction on the number T of layers.
For T = 1, this follows from Proposition 4.

Now suppose the result holds for signaling cascades of PTM systems with T − 1
layers for some T � 2, and let G be a cascade with T layers. By Theorem 2(ii), it is
enough to show that ĜT has the siphon/P-semiflow property.

By construction, the species set ŜT of ĜT can be partitioned as the disjoint union
ŜT = S ′ ∪S∗∗

T of the species sets of G ′ and G∗∗
T . We claim that every minimal siphon

of ĜT is entirely contained in either S ′ or S∗∗
T . To see this, let Σ̂T be any minimal

siphon of ĜT , and suppose it is not entirely contained in S ′. So, ΣT ∩ S∗∗
T 
= ∅.

By hypothesis, G∗∗
T is a monomolecular network with the property that each of its

connected components is strongly connected. Thus, each of its connected components
is a minimal siphon. We conclude that ΣT contains one of the connected components
of G∗∗

T and, by minimality, must be actually equal to it.
By the inductive hypothesis and Lemma 4, G ′ has the siphon/P-semiflow property.

By Proposition 3, G∗∗
T also has the siphon/P-semiflow property. We conclude from the
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block-diagonal decomposition in (9) and the claim above that ĜT has the siphon/P-
semiflow property. ��

4.2 Dissipative networks

In the next definition, we use the same notation as in Sect. 2.3.

Definition 15 (Dissipative networks) A reaction network (3) is said to be dissipative
if its solutions are eventually uniformly bounded. More precisely, if there exists a
constant K � 0 such that

lim sup
t→∞

|σ(t, s0)| � K ,

for each initial state s0 � 0.

Corollary 3 If a dissipative reaction network is bounded-persistent, then it is persis-
tent.

Proof Indeed, every solution of a dissipative reaction network is bounded. The con-
clusion then follows from Lemma 17 in Sect. 1 in the appendix. ��
Example 14 (Monomer–dimer toggle) Consider the monomer–dimer toggle model
given by the reaction network

X1 −→ X1 + P1 P1 −→ 0 X2 + P1 −⇀↽− X2P1 (10)

X2 −→ X2 + P2 P2 −→ 0 X1 + P2P2 −⇀↽− X1P2P2 2P2 −⇀↽− P2P2

The leftmost four reactions model basal protein production and degradation. The
P2P2 represents a dimeric species, while X2P1 and X1P2P2 represent, respectively,
monomers and dimers bound to gene promoters. See Siegal-Gaskins et al. 2015, page
S1 for further contextualization.

By removing the set of intermediates {X2P1, X1P2P2}, we obtain the network

X1 −→ X1 + P1 P1 −→ 0 (11)

X2 −→ X2 + P2 P2 −→ 0 2P2 −⇀↽− P2P2.

Now {P2P2} constitutes a set of intermediates of (11). Its removal yields

X1 −→ X1 + P1 X2 −→ X2 + P2 P1 −→ 0 P2 −→ 0 (12)

Now {X1, X2} is a set of catalysts of (12). Their removal leaves us with

P1 −⇀↽− 0 −⇀↽− P2. (13)

This is a non-conservative strongly connected monomolecular network. Thus, by
Corollary 2, the network (10) is bounded-persistent and does not have boundary steady
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states in any stoichiometric compatibility class that is not contained in the boundary
of the positive orthant. Under mass-action kinetics, (10) is dissipative (Siegal-Gaskins
et al. 2015, pages S7–S8). Thus, it is also persistent by Corollary 3.

4.3 A shuttling and degradation focused Wnt model

The following reaction networkmodel for theWnt pathway was proposed inMacLean
et al. (2015).

Ya + X −⇀↽− CY X −→ Ya Yin + Pn −⇀↽− CY Pn −→ Yan + Pn

Yi + P −⇀↽− CY P −→ Ya + P Yan + Xn −⇀↽− CY Xn −→ Yan

Yan + Dan −⇀↽− CY Dn −→ Yin + Dan Ya + Da −⇀↽− CY D −→ Yi + Da

0 −⇀↽− X −⇀↽− Xn −→ 0 Yi −⇀↽− Yin

Di −⇀↽− Da −⇀↽− Dan Xn + T −⇀↽− CXT

Note that {CY X ,CY Pn ,CY P ,CY Xn ,CY Dn ,CY D,CXT , Di } is a set of intermediates.
Their removal yields the reaction network

Ya + X −→ Ya
Yi + P −→ Ya + P

Yan + Dan −→ Yin + Dan

0 −⇀↽− X −⇀↽− Xn −→ 0

Da −⇀↽− Dan

Yin + Pn −→ Yan + Pn
Yan + Xn −→ Yan
Ya + Da −→ Yi + Da

Yi −⇀↽− Yin

Now {Da, Dan, Pn, P} constitutes a set of catalysts. After their removal, we obtain
the reaction network

Ya + X −→ Ya Ya −⇀↽− Yi −⇀↽− Yin −⇀↽− Yan

Yan + Xn −→ Yan 0 −⇀↽− X −⇀↽− Xn −→ 0

We may now remove {Yi ,Yin} as a set of intermediates, and then remove {Ya,Yan} as
a set of catalysts, thus obtaining

0 −⇀↽− X −⇀↽− Xn −→ 0.

This is a non-conservative strongly connected monomolecular network. Thus, by
Corollary 2, the network (10) is bounded-persistent and does not have boundary steady
states in any stoichiometric compatibility class that is not already contained in the
boundary of the positive orthant. ��
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5 Proofs of Theorems 1, 2 and 3

In Sect. 5.1 we prove Theorem 1, items (i), (iii) and (iv). Likewise, the proof of
Theorem 2, items (i), (iii) and (iv) is carried out in Sect. 5.2. Item (ii) in each result
follows from (i) in the same result by Corollary 1. The proof of Theorem 3 is worked
out in Sect. 5.3.

We begin with a general fact about reaction networks. Let G = (S, C,R) be a
reaction network, and let (C1,R1), . . . , (CJ ,RJ ) be the connected components of its
reaction graph (C,R).

Lemma 5 For each j ∈ [J ], y′ − y ∈ Γ for all y, y′ ∈ C j .

Proof Since y and y′ are in the same connected component of (C,R), there exists an
undirected reaction path y — y1 — · · · — yk — y′ in (C,R) connecting y and y′.
Now

y′ − y = (y′ − y1) +
k∑

i=2

(yi−1 − yi ) + (yk − y) ∈ Γ,

establishing the lemma. ��

5.1 Intermediates

Now suppose G∗ = (S∗, C∗,R∗) is the reduction of G by the removal of a set of
intermediates Y . Recall that S∗ does not always agree with S\Y . Let

X := (S\Y)\S∗,

and write

X = {X1, . . . , X�}, and S∗ = {S∗
1 , . . . , S

∗
n }.

Thus,

S = S∗ ∪ X ∪ Y = {S∗
1 , . . . , S

∗
n , X1, . . . , X�,Y1, . . . , Yp}.

This is the ordering we shall assume whenever working with the stoichiometric matrix
or the stoichiometric subspace of G. Given a complex

y = (α1, . . . , αn, γ1, . . . , γ�, β1, . . . , βp) =
n∑

i=1

αi S
∗
i +

�∑

i=1

γi Xi +
p∑

i=1

βi Yi ,

in C, we will denote its projection over the first n coordinates by

ŷ := (α1, . . . , αn) =
n∑

i=1

αi S
∗
i . (14)
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Conversely, given a complex ŷ in R
n≥0 as in (14), we denote its embedding in R

n+�+p

by

y := (α1, . . . , αn, 0, . . . , 0) =
n∑

i=1

αi S
∗
i .

Lemma 6 For each j ∈ [J ], if y, y′ ∈ C j\Y , then ŷ and ŷ′ are in the same connected
component of (C∗,R∗).

Proof If y 
= y′, then there exists an undirected reaction path

y — y1 — · · · — yk — y′

in (C,R) connecting y and y′. Let i1, . . . , id ∈ [k] be the indices such that
yi1 , . . . , yid ∈ C\Y , so that each non-endpoint in each of the paths

y — y1 — · · · — yi1−1 — yi1 ,

yi1 — yi1+1 — · · · — yi2−1 — yi2 ,

...

yid — yid+1 — · · · — yk — y′,

(15)

is an intermediate. We may assume without loss of generality that, within each path,
all arrows point in the same direction. To see this, suppose that this is not the case for,
say, the first path. Suppose y → y1, and let q1 ∈ [i1 − 1] be the index corresponding
to the first (intermediate) complex where the arrows switch directions. So we have

y −→ y1 −→ · · · −→ yq1 ←− yq1+1 · · · .

By (I2), there exists y(1) ∈ C\Y , and Y (1), . . . ,Y (p1) ∈ Y such that,

yq1 −→ Y (1) −→ · · · −→ Y (p1) −→ y(1)

is a reaction path in G. We may then split the first path in (15) into the two paths

y −→ y1 −→ · · · −→ yq1 −→ Y (1) −→ · · · −→ Y (p1) −→ y(1),

y(1) ←− Y (p1) ←− · · · ←− Y (1) ←− yq1 ←− yq1+1 · · · ,

where in each path we remove any loops starting and ending at an intermediate that
might have been created. If there are other changes of direction between yq1 and yi1 ,
we may employ the same construction as many times as needed. If y ← y1 instead,
the argument is analogous, and the same construction applies also to any other path
not having the property that all arrows point in the same direction.
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This construction gives an undirected reaction path in (C∗,R∗):

ŷ — ŷi1 — · · · — ŷid — ŷ′.

We conclude that ŷ and ŷ′ are in the same connected component of (C∗,R∗). ��
Remark 5 We have that supp y ∩ X = ∅ whenever the connected component of G
that contains y contains at least one more non-intermediate complex y′.

Conservation laws

Weprove hereTheorem1(iv). Inwhat follows,Γ ∗ ⊆ R
n is the stoichiometric subspace

of G∗. Thus, its orthogonal complement (Γ ∗)⊥ is taken in R
n .

Lemma 7 For each j ∈ [J ],

(ω∗, x, 0) · y = (ω∗, x, 0) · y′, ∀y, y′ ∈ C j\Y, ∀(ω∗, x) ∈ (Γ ∗)⊥ × R
�.

Proof Fix arbitrarilyω∗ ∈ (Γ ∗)⊥, x ∈ R
�, j ∈ [J ], and y, y′ ∈ C j\Y . The equality is

trivial if y = y′, so, assume y 
= y′. By Lemma 6, ŷ and ŷ′ are in the same connected
component of (C∗,R∗). By Lemma 5, we conclude that ŷ − ŷ′ ∈ Γ ∗. In view of
Remark 5, we have now

(ω∗, x, 0) · (y − y′) = ω∗ · (ŷ − ŷ′) = 0,

completing the proof. ��
For each j ∈ [J ], fix arbitrarily a complex y j ∈ C j\Y . Property (I2) in the definition

of intermediates ensures that C j\Y is always nonempty. For each i ∈ [p], let ji ∈ [J ]
be the index uniquely defined by the property that Yi ∈ C ji . Define

a : (Γ ∗)⊥ × R
� −→ R

p

(ω∗, x) �−→ ((ω∗, x, 0) · y j1 , . . . , (ω∗, x, 0) · y jp ).

Note that, by Lemma 7, a is independent of the chosen representatives y j ∈ C j\Y ,
j ∈ [J ].
Lemma 8 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of intermediates Y . Then

Γ ⊥ = {(ω∗, x, a(ω∗, x)) | (ω∗, x) ∈ (Γ ∗)⊥ × R
�}.

Proof (I) We first show the inclusion ⊇. To this end, fix arbitrarily ω∗ ∈ (Γ ∗)⊥, and
x ∈ R

�. Denote

ω := (ω∗, x, a(ω∗, x)).
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Fix arbitrarily y → y′ ∈ R. We want to show that

ω · (y′ − y) = 0.

There are four possibilities.

(1) If ŷ → ŷ′ ∈ R∗, then

ω · (y′ − y) = ω∗ · (ŷ′ − ŷ) = 0.

(2) If y → y′ = y → Yi for some Yi ∈ Y , and some y ∈ C\Y , then

ω · (y′ − y) = ω · (Yi − y) = (ω∗, x, 0) · y ji − (ω∗, x, 0) · y = 0,

by Lemma 7, since y and y ji belong to the same connected component of (C,R).
(3) If y → y′ = Yi → y′ for some Yi ∈ Y , and y ∈ C\Y , then the argument is the

same as in (2).
(4) If y → y′ = Yi → Yk for some Yi ,Yk ∈ Y , then ji = jk , and so

ω · (y′ − y) = ω · (Yk − Yi ) = (ω∗, x, 0) · y ji − (ω∗, x, 0) · y jk = 0.

This establishes the inclusion ⊇. In particular,

dim((Γ ∗)⊥ × R
�) = dim(Γ ∗)⊥ + � � dim Γ ⊥.

(II) To finish the proof, it is now enough to show that

dim Γ ⊥ � dim(Γ ∗)⊥ + �. (16)

We claim that
dim Γ � dim Γ ∗ + p. (17)

On the one hand, for each reaction ŷ → ŷ′ ∈ R∗, there exists a reaction path in G
connecting y to y′, so y and y′ are in the same connected component of (C,R). It
follows by Lemma 5 that y′ − y ∈ Γ . On the other hand, for each intermediate Yi ∈ Y ,
there exists a y(i) ∈ C\Y and a reaction path in G connecting Yi to y(i). Again by
Lemma 5, we have Yi − y(i) ∈ Γ . Furthermore, Y1 − y(1), . . . ,Yp − y(p), (y′ − y)
are linearly independent for each ŷ → ŷ′ ∈ R∗. This gives us (17).

Combining dim Γ + dim Γ ⊥ = dimR
n+�+p and (17), we get

dim Γ ⊥ = n + � + p − dim Γ � n − dim Γ ∗ + � = dim(Γ ∗)⊥ + �.

This establishes (16), completing the proof. ��
Proof of Theorem 1(iv). (⇒) Ifω = (ω∗, x, a(ω∗, x)) is a strictly positive conservation
law of G, then ω∗ is a strictly positive conservation law of G∗.
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(⇐) If ω∗ is a strictly positive conservation law of G∗, then choose any x ∈ R
�
>0.

It holds that (ω∗, x, 0) · y ji > 0 for all i ∈ [p] since y ji 
= 0 and the support of y ji
is included in the support of (ω∗, x). Then ω = (ω∗, x, a(ω∗, x)) is a strictly positive
conservation law of G by Lemma 8. ��

Siphons

Lemma 9 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of intermediates Y . If Σ is a siphon of G, then

Σ∗ := Σ ∩ S∗

is either the empty set, or a siphon of G∗. Furthermore, if Σ∗ is empty, then Σ ∩ X
is nonempty.

Proof First supposeΣ∗ 
= ∅. Pick any S′ ∈ Σ∗, and let ŷ → ŷ′ ∈ R∗ be any reaction
having S′ as one of its products. Then there exists a reaction path in G connecting y
and y′. Since Σ is a siphon of G, some species S constituting y belongs to Σ . Since
ŷ ∈ C∗, we must have S ∈ Σ∗. Thus, Σ∗ is a siphon of G∗.

Now suppose Σ∗ = ∅. Since Σ 
= ∅ and S = S∗ ∪ X ∪ Y , we must have
Σ ∩ X 
= ∅ or Σ ∩ Y 
= ∅. If Σ ∩ X 
= ∅, then we have nothing left to prove. So,
assumeΣ ∩Y 
= ∅, and fix arbitrarily a Y ∈ Σ ∩Y . By (I2), there exist y ∈ C\Y and
a reaction path in G connecting y to Y , and we conclude that one of the species in y
belongs to Σ . Since y is supported in S∗ ∪X , and since Σ ∩ S∗ = ∅ by hypothesis,
we conclude that Σ ∩ X 
= ∅. ��

Given a subset Σ ⊆ S, we define M(Σ) to be the subset of intermediates Y ∈ Y
that appear in a reaction path

Y −→ Y (1) −→ · · · −→ Y (k) −→ y′

for some y′ whose support intersects Σ , and some Y (1), . . . ,Y (k) ∈ Y . Note that if Σ

is a siphon of G, then M(Σ) ⊆ Σ by Remark 1.

Lemma 10 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of intermediates Y . If Σ∗ is a siphon of G∗, then

Σ := Σ∗ ∪ M(Σ∗)

is a siphon of G. Furthermore, any siphon of G containing Σ∗ must also contain
M(Σ∗).

Proof Pick any S′ ∈ Σ , and let y → y′ ∈ R be any reaction having S′ as one of its
products.

Suppose first S′ ∈ Σ∗. If ŷ → ŷ′ ∈ R∗, then Σ∗ contains some reactant of
y → y′, and so does Σ . If ŷ → ŷ′ /∈ R∗, then y → y′ = Y → y′ for some Y ∈ Y .
By construction, Y ∈ M(Σ∗) ⊆ Σ .
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Now suppose S′ /∈ Σ∗. Then S′ ∈ M(Σ∗), meaning that y′ = S′ ∈ Y , and that
there exists a reaction path

S′ −→ Y (1) −→ · · · −→ Y (k) −→ y′
0

in G such that the support of y′
0 intersects Σ∗, and Y (1), . . . ,Y (k) ∈ Y . If y ∈ Y , then

it follows that y ∈ M(Σ∗), and so y → y′ has a reactant in Σ . If y /∈ Y , we have
ŷ → ŷ′

0 ∈ R∗, and so one of the species constituting ŷ belongs to Σ∗. We conclude
that one of the reactants of y → y′ belongs to Σ . This completes the proof that Σ is
a siphon of G.

It follows straight from the construction of M(Σ∗) and Remark 1, that any siphon
of G containing Σ∗ must also contain all the intermediates in M(Σ∗). ��

Drainable and self-replicable siphons

Lemma 11 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of intermediates Y . If Σ ⊆ S is a drainable or self-replicable siphon
of G, then Σ∗ := Σ ∩ S∗ is nonempty.

Proof Suppose on contrary that Σ∗ = ∅. Then Σ ∩ X is nonempty by Lemma 9.
Consider the P-semiflow

ω := (0, x, a(0, x)) > 0, where x :=
∑

i : Xi∈Σ∩X
ei .

Let i ∈ [p] such that ai (0, x) = (0, x, 0) · y ji > 0. Then supp(y ji ) ∩ (Σ ∩ X ) 
= ∅.
By Remark 5, y ji is the only non-intermediate complex in the connected component
where Yi belongs to. Therefore there must exist a reaction path connecting Yi to y ji
and hence Yi ∈ M(Σ ∩X ). It follows that suppω ⊆ (Σ ∩X )∪ M(Σ ∩X ) ⊆ Σ . So,
Σ contains the support of a P-semiflow, in other words,Σ is noncritical. We conclude
by Proposition 1(i) that Σ can be neither drainable nor self-replicable, contradicting
the hypotheses. ��

We are now ready to prove Theorem 1(i).
Proof of Theorem 1(i). In virtue of Lemma 1, it suffices to show that the result holds for
the removal of a single intermediate Y . The general result then follows by induction
on the size of the set of intermediates.

(⇐) Suppose Σ∗ ⊆ S∗ is a drainable siphon of G∗. By Lemma 10, Σ := Σ∗ ∪
M(Σ∗) is a siphon of G. We will show that it is drainable.

By construction, we have M(Σ∗) = ∅ or M(Σ∗) = {Y }. If M(Σ∗) = ∅, then
Σ = Σ∗, and any reaction that contains a species in Σ∗ in the product belongs toR∗

c .
Thus we have nothing left to show. So, we may assume M(Σ∗) = {Y }. Since Σ∗ is
drainable, there exist reactions

ŷ1 → ŷ′
1, . . . , ŷkY → ŷ′

kY ∈ R∗
Y and ẑ1 → ẑ′1, . . . , ẑkc → ẑ′kc ∈ R∗

c
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such that

θi :=
kY∑

j=1

(ŷ′
j − ŷ j )i +

kc∑

j=1

(̂z′j − ẑ j )i < 0, ∀i ∈ [n] : S∗
i ∈ Σ∗.

Let T be a large enough positive integer such that (ŷ′
1)i + T θi < 0 for every i ∈ [n]

such that S∗
i ∈ Σ∗. We have

y1 → Y, Y → y′
1, . . . , ykY → Y, Y → y′

kY , z1 → z′1, . . . , zkc → z′kc ∈ R.

Let

α := (y′
1 − Y ) +

kY∑

j=1

T (Y − y j ) +
kY∑

j=1

T (y′
j − Y ) +

kc∑

j=1

T (z′j − z j )

We have

αi =
{

(ŷ′
1)i + T θi < 0 if i ∈ [n] : S∗

i ∈ Σ∗

[1ex] − 1 < 0 if i = n + � + 1.

The last case corresponds to the coordinate of Y . This shows Σ is drainable.
(⇒) Suppose Σ ⊆ S is a drainable siphon of G. By Lemmas 9 and 11, Σ∗ :=

Σ ∩ S∗ is a siphon of G∗. We will show that it is drainable.
Since Σ is drainable, there exist reactions

y1 → Y, . . . , ykY → Y,Y → y′
1, . . . ,Y → y′

kd , z1 → z′1, . . . , zkc → z′kc ∈ R (18)

such that y1, . . . , ykY , y′
1, . . . , y

′
kd

, z1, z′1, . . . , zkc , z′kc ∈ C\Y , and

αi :=
kY∑

j=1

(Y − y j )i +
kd∑

j=1

(y′
j − Y )i +

kc∑

j=1

(z′j − z j )i < 0,

for all i ∈ [n] such that S∗
i ∈ Σ∗ = Σ ∩ S∗, and also for i = n + � + 1, if Y ∈ Σ . In

the latter case, since αn+�+1 = kY − kd , it must hold that kY < kd .
If kd > kY , then

αi =
kY∑

j=1

(y′
j − y j )i+

kd∑

j=kc+1

(y′
j )i +

kc∑

j=1

(z′j − z j )i ≥
kY∑

j=1

(ŷ′
j − ŷ j )i+

kc∑

j=1

(̂z′j − ẑ j )i ,

for all i such that S∗
i ∈ Σ∗. Thus Σ∗ is drainable using the reactions ŷ1 →

ŷ′
1, . . . , ŷkY → ŷ′

kY
∈ R∗

Y and ẑ1 → ẑ′1, . . . , ẑkc → ẑ′kc ∈ R∗
c .
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If kY ≥ kd , then necessarily Y /∈ Σ . Then, for all reactions in (18) of the form
Y → y′, the support of y′ does not contain any species in Σ∗. In particular this holds
for y′

1, . . . , y
′
kd
. Choose any y′ ∈ C\Y such that Y → y′ ∈ R. We have

αi =
kY∑

j=1

−(y j )i +
kY∑

j=1

(y′)i +
kc∑

j=1

(z′j − z j )i =
kY∑

j=1

(ŷ′ − ŷ j )i +
kc∑

j=1

(̂z′j − ẑ j )i ,

for all i such that S∗
i ∈ Σ∗, since (y′)i = 0. Thus Σ∗ is drainable using the reactions

ŷ1 → ŷ′, . . . , ŷkY → ŷ′ ∈ R∗
Y and ẑ1 → ẑ′1, . . . , ẑkc → ẑ′kc ∈ R∗

c .
The proof for self-replicable siphons is entirely analogous, with the appropriate

inequalities reversed, and the roles played by reactions creating or consuming Y
swapped. ��

Consistency

Lemma 12 Suppose G∗ = (S∗, C∗,R∗) is the reduction of a reaction network G =
(S, C,R) by the removal of a set of intermediates {Y } containing a single intermediate
Y . Then G∗ is consistent if, and only if network G is consistent.

Proof (⇒) Suppose G∗ is consistent. This is equivalent to say that

∑

y→y′∈R∗
vy→y′(y′ − y) = 0

for some vy→y′ > 0, y → y′ ∈ R∗. Let R∗
Y ⊆ R∗ be the subset of reactions

y → y′ ∈ R∗ such that y → Y,Y → y′ ∈ R, and let R∗
c ⊆ R∗ be the subset of all

reactions y → y′ ∈ R∗ such that y → y′ ∈ R. Note that

R∗ = R∗
Y ∪ R∗

c ,

and that the union need not be disjoint. Let C↔ ⊆ C be the subset of complexes y ∈ C
such that y → Y,Y → y ∈ R. Then

0 =
⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

+
∑

y→y′∈R∗
Y∩R∗

c

+
∑

y→y′∈R∗
c\R∗

Y

⎞

⎠ vy→y′(y′ − y)

+
∑

y∈CY
(Y − y) +

∑

y′∈CY
(y′ − Y )

=
⎛

⎝1

2

∑

y→y′∈R∗
Y∩R∗

c

+
∑

y→y′∈R∗
c\R∗

Y

⎞

⎠ vy→y′(y′ − y)

+
⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

vy→y′ + 1

2

∑

y→y′∈R∗
Y∩R∗

c

vy→y′ +
∑

y∈CY

⎞

⎠ (Y − y)
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+
⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

vy→y′ + 1

2

∑

y→y′∈R∗
Y∩R∗

c

vy→y′ +
∑

y′∈CY

⎞

⎠ (y′ − Y )

=
∑

y→y′∈R
wy→y′(y′ − y),

where

wy→y′ = vy→y′ , if y → y′ ∈ R∗
c\R∗

Y , (19)

wy→y′ = vy→y′

2
, if y → y′ ∈ R∗

Y ∩ R∗
c , (20)

wy→Y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

+1

2

∑

y→y′∈R∗
Y∩R∗

c

⎞

⎠ vy→y′ + 1, if y ∈ CY
⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

+1

2

∑

y→y′∈R∗
Y∩R∗

c

⎞

⎠ vy→y′ , if y /∈ CY ,

(21)

and, similarly,

wY→y′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

+1

2

∑

y→y′∈R∗
Y∩R∗

c

⎞

⎠ vy→y′ + 1, if y′ ∈ CY
⎛

⎝
∑

y→y′∈R∗
Y \R∗

c

+1

2

∑

y→y′∈R∗
Y∩R∗

c

⎞

⎠ vy→y′ , if y′ /∈ CY .

(22)

Since G∗ is obtained from G by the removal of a single intermediate Y , every reaction
in R is of the form y → y′, y → Y or Y → y′ for some y → y′ ∈ R∗, or of the
form y → Y or Y → y for some y ∈ CY . Thus, (19)–(22) above yield wy→y′ > 0 for
every y → y′ ∈ R, and we conclude that G is consistent.

(⇐) Now suppose G is consistent, so that there exist wy→y′ > 0, for all y → y′ ∈
R, such that ∑

y→y′∈R
wy→y′(y′ − y) = 0. (23)

We partition the set R of reactions of G as the (disjoint) union

R = R∗
c ∪ R→Y ∪ RY→,

where R∗
c is defined as in the first part of the proof, R→Y is the subset of R of

reactions having Y as a product, andRY→ is the subset ofR of reactions having Y as
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a reactant. Observe that Y is linearly independent with each complex in C∗. Combining
all coefficients of Y in (23), we obtain

∑

y→Y∈R→Y

wy→Y −
∑

Y→y′∈RY→

wY→y′ = 0,

and so

∑

Y→y′∈RY→

wY→y′ y′ −
∑

y→Y∈R→Y

wy→Y y +
∑

y→y′∈R∗
c

wy→y′(y′ − y) = 0. (24)

Set

V :=
∑

y→Y∈R→Y

wy→Y =
∑

Y→y′∈RY→

wY→y′ .

We have

∑

Y→y′∈RY→

wY→y′ y′ =
∑

y→Y∈R→Y

∑

Y→y′∈RY→

wy→YwY→y′

V
y′

and

∑

y→Y∈R→Y

wy→Y y =
∑

y→Y∈R→Y

∑

Y→y′∈RY→

wy→YwY→y′

V
y.

Plugging these last two identities into (24), we may rewrite it as

∑

y→y′∈R∗
vy→y′(y′ − y) = 0,

where

vy→y′ :=

⎧
⎪⎨

⎪⎩

wy→y′ if y → y′ ∈ R∗
c\R∗→,

wy→y′ + wy→YwY→y′
V if y → y′ ∈ R∗

c ∩ R∗→,
wy→YwY→y′

V ifR∗→\R∗
c .

In particular, vy→y′ > 0 for every y → y′ ∈ R∗, showing that G∗ is consistent. ��

Proof of Theorem 1(iii). Let Gp := G and, for i = p, . . . , 1, let Gi−1 be the reaction
network obtained from Gi by the removal of the set of intermediates {Yi }. By Lemma
1, G0 = G∗. Iterating Lemma 12, we conclude that G∗ is consistent if, and only if G
is consistent. ��
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5.2 Catalysts

Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the removal of a
set of catalysts E . Let GE = (SE , CE ,RE ) be the subnetwork of G implied by E , and
write

S∗ = {S∗
1 , . . . , S

∗
n }, SE = {Ea

1 , . . . , Ea
qa }, and E\SE = {Eu

1 , . . . , Eu
qu }.

Thus

S = {S∗
1 , . . . , S

∗
n , E

a
1 , . . . , Ea

qa , E
u
1 , . . . , Eu

qu }.

These are the orderings we shall assume on the species whenever working with the
stoichiometric matrices or stoichiometric subspaces of G, G∗ or GE .

Conservation laws

Lemma 13 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of catalysts E . Then

Γ ⊥ = (Γ ∗)⊥ × Γ ⊥
E × R

qu ⊆ R
n+qa+qu .

Proof Write

R∗ = {R∗
1 , . . . , R

∗
m},

and set RS := R\RE . For each j ∈ [m], let R( j)
1 , . . . , R( j)

k j
∈ RS be the reactions

of G from which R∗
j is obtained by removing the catalysts from both reactant and

product in the construction of G∗. Write

RE = {RE
1 , . . . , RE

mE }.

Thus

R = {R(1)
1 , . . . , R(1)

k1
, . . . , R(m)

1 , . . . , R(m)
km

, RE
1 , . . . , RE

mE }.

With these orderings onR,R∗ andRE , we may express the stoichiometric matrix N
of G as

N =
⎡

⎣
N ′ 0
0 NE
0 0

⎤

⎦ , (25)

where N ′ has n rows, k1 + · · · + km columns, and has the property that the columns
corresponding to R( j)

1 , . . . , R( j)
k j

are equal to the j th column of N∗, for j = 1, . . . ,m,
where NE is the stoichiometric matrix of GE , and where the bottom qu rows are zero.
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Given ω∗ ∈ R
n , we have (ω∗)T N∗ = 0 if, and only if (ω∗)T N ′ = 0. Hence, given

ω = (ω∗, ωE , x) ∈ R
n+qa+qu ,

we have ωT N = 0 if, and only if (ω∗)T N∗ = 0, and ωT
E NE = 0. This proves the

lemma. ��
Proof of Theorem 2(iv). (⇒) If ω = (ω∗, ωE , x) is a strictly positive conservation law
of G, then ω∗ is a strictly positive conservation law of G∗ by Lemma 13.

(⇐) If ω∗ is a strictly positive conservation law of G∗, then choose any x ∈ R
qu
>0

and a strictly positive vector ωE ∈ Γ ⊥
E , which exists since GE is conservative. Then

ω = (ω∗, ωE , x) is a strictly positive conservation law of G by Lemma 13. ��

Siphons

Lemma 14 Suppose G∗ = (S∗, C∗,R∗) is the reduction of G = (S, C,R) by the
removal of a set of catalysts E . Let Σ be a minimal siphon of G. Then one of the three
possibilities below is true.

(i) Σ ⊆ S∗, and it is a minimal siphon of G∗.
(ii) Σ ⊆ SE , and it is a minimal siphon of GE .
(iii) Σ = {E} for some E ∈ E\SE .
Proof SupposeΣ ∩(E\SE ) 
= ∅. Pick any E ∈ (E\SE ). Then E appears as a reactant
in every reaction inwhich it also appears as a product.We conclude that {E} is a siphon,
which must then be minimal. It follows that (iii) holds.

Now suppose Σ ∩ (E\SE ) = ∅. We have two possibilities.
If ΣE := Σ ∩ SE 
= ∅, then it is a siphon of G. Indeed, pick any S′ ∈ ΣE , and

let y → y′ ∈ R be any reaction having S′ as one of its products. Since Σ is a siphon
of G, y → y′ must have one of its reactants S in Σ . If y → y′ /∈ RE , then S′ is also
a reactant in y → y′, and we may assume without loss of generality that S = S′. If
y → y′ ∈ RE , then we have y = S and S ∈ SE . In either case, y → y′ has a reactant
S in ΣE . This shows ΣE is a siphon of GE . By the minimality assumption, we must
have Σ = ΣE ⊆ SE . Since every siphon of GE is also a siphon of G, we conclude
that ΣE must be a minimal siphon of GE .

If Σ ∩ E = ∅, then Σ ⊆ S∗. It follows from the construction of G∗ that Σ is a
minimal siphon of G∗. ��

Drainable and self-replicable siphons

Proof of Theorem 2(i). (⇐) In virtue of (C1), any drainable (respectively, self-
replicable) siphon of G∗ is also a drainable (respectively, self-replicable) siphon of
G.

(⇒) Suppose Σ is a drainable or self-replicable siphon of G. It is evident from
Definition 5 that any siphon of G contained in Σ is also drainable or self-replicable.
Therefore, we may assume without loss of generality that Σ is minimal. By Lemma
14, either Σ ⊆ S∗, or Σ ⊆ SE , or Σ = {E} for some E ∈ E\SE .
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IfΣ = {E} for some E ∈ E\SE , then the rowof N corresponding to E is identically
zero, and so the vector of R

q+p
�0 having its entry corresponding to E equal to 1 and

all other entries equal to zero is a P-semiflow supported in Σ . In particular, Σ is not
critical, therefore neither drainable nor self-replicable by Proposition 1(i).

If Σ ⊆ SE , then it follows from (C2) that Σ cannot be drainable or self-replicable
either.

So, it must be the case that Σ ⊆ S∗. Consider a reaction y → y′ in R∗ and
the reaction ỹ → ỹ′ in R giving rise to it. Then the i-th coordinate of the vectors
y′ − y and ỹ′ − ỹ agree for all i ∈ [q]. Using this observation, we conclude that
Σ∗ := Σ ∩ S∗ = Σ is a drainable or self-replicable siphon of G∗. ��

Consistency

Proof of Theorem 2(iii). We write the stoichiometric matrix N of G as in the proof of
Lemma 13.

First suppose that G is consistent, and let v � 0 be such that Nv = 0. Thus,
N ′v′ = 0, where v′ := (v1, . . . , vk1+···+km ) � 0. Defining v∗ ∈ R

m by setting

v∗
j := vk1+···+k j−1+1 + · · · + vk1+···+k j−1+k j ,

we then get v∗ � 0 and N∗v∗ = 0, showing that G∗ is consistent.
Now suppose G∗ is consistent and GE is conservative. Let v∗ � 0 be any vector

such that N∗v∗ = 0. Set

v′
j := 1

k j
(v j , . . . , v j ) ∈ R

k j , j = 1, . . . ,m,

and then set

v′ := (v′
1, . . . , v

′
m) ∈ R

k1+···+km .

Then N ′v′ = 0. Since GE does not have drainable siphons and is conservative, it
follows from Proposition 2 that GE is consistent. Let vE � 0 be such that NEvE = 0.
Setting v := (v′, vE ), we have v � 0, and Nv = 0, proving that G is consistent. ��

5.3 Uniqueness of the primitive reduction

To prove Theorem 3, we will use induction on the number of species. We start with a
few observations and auxiliary results.

In this subsection we will use the following notation. Given a reaction network
G = (S, C,R) and a setA ⊆ S of intermediates or catalysts of G, we will denote by
G∗
A = (S∗

A, C∗
A,R∗

A) the reaction network obtained fromG by the removal ofA (as a
set of intermediates or catalysts, whichever happens to be the case). Given another set
B ⊆ S of intermediates (respectively, catalysts) of G, note that B\A is either empty,
or else also a set of intermediates (respectively, catalysts) of G∗

A. We then denote by
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G∗
AB = (S∗

AB, C∗
AB,R∗

AB) the reaction network obtained from G∗
A by the removal

of B\A.

Lemma 15 Given a reaction network G = (S, C,R), supposeA,B ⊆ S are two sets
of intermediates or two sets of catalysts of G. Let D := A ∪ B. Then G∗

D = G∗
AB =

G∗
BA.

Proof IfA andB are both sets of intermediates, then the result follows fromLemma 1.
Removing first the intermediates in A one at a time, then removing the intermediates
in B\A yields G∗

AB. The analogue procedure starting with the intermediates in B
yields G∗

BA. One then concludes by the same lemma that G∗
AB = G∗

BA = G∗
D.

Now supposeA and B are both sets of catalysts. Then bothR∗
AB andR∗

BA consist
of the reactions

∑

i : Si /∈D
αi Si −→

∑

i : Si /∈D
α′
i Si

such that

n∑

i=1

αi Si −→
n∑

i=1

α′
i Si

belongs toR, and αi0 > 0 or α′
i0

> 0 for some i0 ∈ [n] such that Si0 /∈ D. This shows
R∗

AB = R∗
BA = R∗

D, establishing the result. ��
Finally, the removal of a set of catalysts also commutes with the removal of a set

of intermediates, in the following sense.

Lemma 16 LetG = (S, C,R)bea reactionnetwork,Y ⊆ S bea set of intermediates,
and E ⊆ S be a set of catalysts. Then G∗

YE = G∗
EY .

Proof Let R(Y) be the subset of reactions c → c′ ∈ R having some intermediate in
Y as a reactant or product. It follows directly from property (I2) of intermediates that
R(Y) is the subset of reactions c → c′ ∈ R which appear in some reaction path

y −→ Y (1) −→ · · · −→ Y (k) −→ y′

such that y, y′ ∈ C\Y and Y (1), . . . ,Y (k) ∈ Y . Let R(E) be the subset of reactions
c → c′ ∈ R having some catalyst in E as both reactant and product. Observe that
R(Y) ∩R(E) = ∅. Thus, bothR∗

YE andR∗
EY consist of the set of reactions y → y′

such that y → y′ ∈ R\(R(Y) ∪ R(E) ∪ RE ), or

y −→ Y (1),Y (1) −→ Y (2), . . . ,Y (k−1) −→ Y (k),Y (k) −→ y′ ∈ R(Y)

for some y, y′ ∈ C\Y and Y (1), . . . ,Y (k) ∈ Y , or

y −→ y′ =
∑

i : Si /∈E
αi Si −→

∑

i : Si /∈E
α′
i Si
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for some

n∑

i=1

αi Si −→
n∑

i=1

α′
i Si

belonging toR(E). ��
Proof of Theorem 3. We use induction on the number of species. A reaction network
with zero species (the empty network) is already primitive, so, in this case, the result
holds vacuously.

Now suppose the result holds for reaction networks with up to n � 0 species, and
let G = (S, C,R) be a reaction network with |S| = n + 1 species. If G is already
primitive, then it is automatically its unique primitive reduction, in which case we
have nothing left to prove. So, we may assume G is not primitive.

Let A,B ⊆ S be sets of intermediates or catalysts of G such that A 
= B. By the
induction hypothesis,G∗

A andG∗
B have unique primitive reductions, respectively,G∗∗

A
and G∗∗

B . We want to show that G∗∗
A = G∗∗

B .
Let G∗∗

AB (respectively, G∗∗
BA) be the primitive reduction of G∗

AB (respectively,
G∗
BA). Note thatG∗∗

AB = G∗∗
A andG∗∗

BA = G∗∗
B . ByLemmas 15 and 16,G∗

AB = G∗
BA,

and hence G∗∗
A = G∗∗

B . ��
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Appendix: Technical results

Proof of Proposition 2

Proposition 2(i). We prove that if G is persistent, then it is bounded-persistent. Take
any s0 � 0. If ω(s0) = ∅, then we have nothing to prove. So, suppose ω(s0) 
= ∅.
Choose any s ∈ ω(s0), and a sequence (tk)k∈N going to infinity in R�0 such that

lim
k→∞ σ(tk, s0) = s.

Then

si = lim inf
k→∞ σi (tk, s0) � lim inf

t→∞ σi (t, s0) > 0, ∀i ∈ [n].

In particular, s /∈ ∂R
n
�0. Thus, ω(s0) ∩ ∂R

n
�0 = ∅. ��

Proposition 2(ii). The converse of Proposition 2(i) is not true. However, (4) holds for
bounded trajectories of bounded-persistent networks—hence the terminology.

Since each stoichiometric compatibility class of a conservative network is compact
(Horn and Jackson 1972, Appendix 1), every solution of (3) is bounded. The proof of
Proposition 2(ii) then follows from the next lemma.
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Lemma 17 Suppose a solution σ(·, s0) : R�0 → R
n
�0 of a bounded-persistent reac-

tion network is bounded. Then

lim inf
t→∞ σi (t, s0) > 0, ∀i ∈ [n]. (26)

Proof Suppose on contrary that

lim inf
t→∞ σi0(t, s0) = 0

for some i0 ∈ [n]. Then

lim
k→∞ σi0(tk, s0) = 0

along some sequence (tk)k∈N going to infinity in R�0. In virtue of boundedness, by
passing into a subsequence, if necessary, we may assume without loss of generality
that (σ (tk, s0))k∈N converges, say,

lim
k→∞ σ(tk, s0) = s∞.

We have s∞ ∈ ω(s0) by definition. But since the i th0 coordinate of s∞ is zero, we
conclude that s∞ ∈ ∂R

n
�0 also. This contradicts the bounded-persistence hypothesis

that ω(s0) ∩ ∂R
n
�0 = ∅. Thus, (26) must hold. ��

Proposition 2(iii). See (Angeli et al. 2007, Theorem 1). ��
Proposition 2(iv). The same argument as in Deshpande and Gopalkrishnan (2014),
Theorem 6.2 works under our weaker assumptions on the reaction rates. ��
Proposition 2(v). We define the zero coordinate set of a point s ∈ R

n
�0, with respect

to some given reaction network G, as the set

Z(s) := {Si ∈ S | si = 0} = S\ supp s.

Thus, a point s ∈ R
n
�0 is a boundary steady state if, and only if Z(s) 
= ∅.

Let s0 be a boundary steady state of G. By Lemma 18 below and our hypothesis,
the zero coordinate set Z(s0) of s0 is a noncritical siphon. It follows by the equivalence
between items 1 and 3 in Deshpande and Gopalkrishnan (2014), Theorem 3.7 that
(s0 + S) ∩ R

n
�0 
= ∅.

The next lemma was proved in Shiu and Sturmfels (2010) for mass-action kinet-
ics. The same argument holds under (r2), and we provide the details for the sake of
completeness.

Lemma 18 Let G be a reaction network. If s0 is a boundary steady state, then Z(s0)
is a siphon.

Proof Pick any Si ∈ Z(s0). Consider the set Ji of indices j ∈ [m] such that R j is a
reaction having Si as one of its products, but not one of its reactants; that is,
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Ji := { j ∈ [m] | α′
i j > 0 and αi j = 0}.

If Ji 
= ∅, we need to show that Z(s0) contains some species in the reactant of each
R j such that j ∈ Ji . Since s0 is a steady state, we have

m∑

j=1

(α′
i j − αi j )r j (s0) = 0. (27)

For each j /∈ Ji , we either have αi j > 0 (in which case r j (s0) = 0 by (r2) since
(s0)i = 0) or α′

i j = αi j = 0. Hence the sum in (27) can be simplified as

∑

j∈Ji

α′
i j r j (s0) = 0.

Since α′
i j > 0 for every j ∈ Ji by construction, we conclude that r j (s0) = 0 for

all j ∈ Ji . It then follows from (r2) that αi( j) j > 0 for some i( j) ∈ [n] such that
Si( j) ∈ Z(s0), that is, one of the reactants of R j belongs to Z(s0) for each j ∈ Ji .
This completes the proof that Z(s0) is a siphon. ��

Drainable and self-replicable siphons

The next result shows that the concepts of drainable and self-replicable sets in Defini-
tion 5 are, respectively, equivalent to the concepts of drainable and self-replicable sets
in Deshpande and Gopalkrishnan (2014), Definition 3.1 (called here DG-drainable
and DG-self-replicable).

Given a reaction network G = (S, C,R), we define a G-reaction pathway to be
any sequence y(0), y(1), . . . , y(k) ∈ R

n
�0 such that

y(0) = y1 + w1,

y( j) = y′
j + w j = y j+1 + w j+1, j = 1, . . . , k − 1,

y(k) = y′
k + wk, (28)

for some y1, y′
1, w1, . . . , yk, y′

k, wk ∈ R
n
�0 such that y1 → y1, . . . , yk → y′

k ∈ R.
Note that

y(k)−y(0) =
k∑

j=1

(
y( j)−y( j−1)

) =
k∑

j=1

(y′
j+w j−y j−w j ) =

k∑

j=1

(y′
j−y j ). (29)

A nonempty subset Σ ⊆ S is said to be DG-drainable (respectively, DG-self-
replicable) if there exists aG-reaction pathway y(0), y(1), . . . , y(k) such that

(
y(k)−

y(0)
)
i < 0 (respectively,

(
y(k) − y(0)

)
i > 0), for every i ∈ [n] such that Si ∈ Σ .
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Proposition 6 Let G = (S, C,R) be a reaction network. A subset of S is drainable
(respectively, self-replicable) if, and only if it is DG-drainable (respectively, DG-self-
replicable).

Proof (⇐) Follows from (29) and Definition 5.
(⇒) Let y1 → y′

1, . . . , yk → y′
k ∈ R be any sequence of reactions. Define,

iteratively,

w1 := y2 + · · · + yk, and w j+1 := y′
j + w j − y j+1, j = 1, . . . , k − 1.

By construction, ω j ∈ R
n
�0 for all j = 1, . . . , k, and y j+1 + w j+1 = y′

j + w j for all
j = 1, . . . , k−1.We can construct a G-reaction pathway y(0), y(1), . . . , y(k) ∈ R

n
�0

from y1, y′
1, w1, . . . , yk, y′

k, wk using (28). The implication now follows again from
(29) and Definition 5. ��
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