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A SMALL-GAIN THEOREM FOR RANDOM DYNAMICAL
SYSTEMS WITH INPUTS AND OUTPUTS∗
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Abstract. A formalism for the study of random dynamical systems with inputs and outputs
(RDSIO) is introduced. An axiomatic framework and basic properties of RDSIO are developed, and
a theorem is shown that guarantees the stability of interconnected systems.
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1. Introduction. For deterministic systems, there is a well-developed and con-
structive theory of systems interconnections and feedback, such as the very successful
and widely applied backstepping approach [18, 16]. Thus, it is natural to attempt
to extend such work to stochastic systems. Indeed, much excellent research has been
done pursuing such extensions, notably studies on stochastic stabilization [13, 27], as
well as feedback stabilization using noise to state stability [10, 9, 33]. In this paper
we pursue a different approach, based instead upon Ludwig Arnold’s notion of ran-
dom dynamical systems (RDS), which provides an elegant and deep axiomatization
of random dynamics.

An RDS is made up of two ingredients, a stochastic but autonomous noise pro-
cess described by a measure-preserving dynamical system (MPDS), combined with a
classical dynamical system that is driven by this process. The noise process is used to
encapsulate randomly fluctuating parameters that may arise from environmental per-
turbations, measurement errors, or internal variability. The RDS formalism provides a
seamless integration of classical ergodic theory with modern dynamical systems, giving
a theoretical framework parallel to classical smooth and topological dynamics (stabil-
ity, attractors, bifurcation theory) while allowing one to treat in a unified way the most
important classes of dynamical systems with randomness, such as random differen-
tial or difference equations (basically, deterministic systems with randomly changing
parameters) or stochastic ordinary and partial differential equations (white noise or,
more generally, semimartingale-driven systems as studied in the Itô calculus). We
refer to [2] for a textbook presentation. The RDS formalism takes full advantage
of the power of ergodic theory. As a simple illustration, suppose that we want to
study the scalar affine system ẋ = ax, where a is randomly varying, a = a(ω). If it
were the case that all realizations of the parameter a are uniformly bounded away from
the origin, a(ω) ≤ −λ < 0 for all ω, then stability would not be an issue. However, it
may be the case that E[a] < 0, even though a may still take nonnegative values with
positive probability. In this case, almost-sure convergence to zero will follow from
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the fundamental (and nontrivial) multiplicative ergodic theorem [2, Chapter 3], the
random proxy for linear algebra upon which much of RDS theory relies. (See also the
discrete-time example in subsection 3.1, Example 3.15, and Remark 3.16 below.)

If we now add an external input or control u and consider the forced system
ẋ = ax+ bu, we similarly have an input-to-state stability property, yielding a globally
attracting state K(u) for each input u, provided that E[a] < 0. (Refer to Example
3.15 for the details.) This paper systematically develops such an extension of RDS
to encompass inputs and outputs, a notion which we term random dynamical systems
with inputs and outputs (RDSIO). We sketched this study (with no outputs) in the
conference paper [22] and proved a basic convergent-input-to-convergent-state (CICS)
theorem in the book chapter [23]. A major contribution of this project is the precise
formulation of the way in which the inputs are shifted in the semigroup (cocycle)
property, and the focus on stochastic inputs, which is essential in order to develop a
theory of interconnected subsystems, as an input to one system in such an intercon-
nection is typically obtained by combining the (necessarily random) outputs of other
subsystems.

CICS theorems provide conditions under which convergence of the input implies
convergence of the state process (for given random initial conditions). Observe that,
even for deterministic systems that are globally asymptotically stable with respect to
constant inputs, the CICS property may not be observed. This led to the introduction
of the notions of input-to-state stability [30] and of monotone systems with inputs
[1] for deterministic systems, either of which allows one to obtain CICS results. In
[23] and, again, in this paper, we pursue a monotone systems approach, expanding
upon the useful framework recently developed by Chueshov [6] for monotone RDS
(without inputs). After considerably refining the basic concepts from [23] and proving
additional basic results, we turn to our main new contribution, the formulation and
proof of a “random small-gain” theorem that guarantees global convergence (to a
unique equilibrium) of interconnected systems.

Organization of the paper. In the rest of this introduction, we discuss a sim-
ple biochemical circuit that will help illustrate our main result. Then, in section 2, we
review the concept of MPDs, introducing some notation and terminology not found
in [2, 6] to facilitate the discussion. Relevant growth conditions and the mode of con-
vergence with respect to which we study asymptotic behavior of stochastic processes
in this work are then described in detail. RDSIO are introduced in section 3. A more
general version of the CICS result for monotone random dynamical systems with in-
puts (RDSI) from [23] is presented, and a thorough treatment of output functions is
given. In section 4, we present and prove our (random) small-gain theorem, giving
several examples illustrating how it can be used to establish global convergence to
a unique equilibrium for RDS. Some results needed in order to verify the small-gain
property for these examples appeal to the theory of Thompson metrics and are out-
lined in section 5. Section 6 briefly discusses some possible future directions. Some
technical details on the spaces that we consider are collected in Appendix A.

The reader familiar with stochastic differential equations (SDE), particularly in
the context of RDS, will certainly note their omission among the examples treated
in this paper. This difficult choice was made for pedagogical reasons. On the one
hand, a complete treatment of SDE, including perfection of cocycles, would have
significantly increased the length and technical complexity of this paper. On the other
hand, differential and difference equations are natural continuous- and discrete-time
analogues of one another, and for which several examples can be explicitly calculated.
This makes them the most natural prototypes to motivate and illustrate the theory.
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Fig. 1. Biochemical circuit. The symbol “X � Y ” means that species X represses the production
of species Y .

Application of the small-gain theorem to the stabilization of closed
systems: A motivating example. We introduce here a simple biochemical circuit
that will help illustrate our main result. The system involves three chemical species
X1, X2, and X3 that interact with one another as illustrated in Figure 1. Systems
of this type are routinely studied as biological models of gene repression, and a syn-
thetic construct was implemented as the repressilator circuit in [11], using the genes
lacI, tetR, and cI. The simplest mathematical model, when only protein products are
used to represent the species (thus omitting intermediate mRNA, posttranslational
modifications, and so forth) uses three time-dependent real variables ξ1, ξ2, and ξ3 to
denote the concentrations of X1, X2, and X3, respectively, and results in a system of
differential equations as follows:

ξ̇i = aiξi + hi(ξi−1) , i = 1, 2, 3 ,

with indices taken modulo three, so ξ0 = ξ3. Here, a1, a2, a3 < 0 are interpreted as
rates of degradation, and h1, h2, h3 are nonincreasing functions of their arguments,
modeling the repression mechanism. Our considerations apply equally well to variants
such as the Goodwin model of gene expression and other models that are standard in
molecular biology [24, 14].

It is natural that the rates of degradation, as well as the strength of the interac-
tions between the species, may depend on environmental factors such as temperature
or pressure, as well as the concentrations of other biochemical compounds not explic-
itly modeled. Furthermore, this dependence may be intrinsically noisy. If this is the
case, then a more realistic model would be a system of differential equations of the
form

(1.1) ξ̇i = ai(λt(ω))ξi + hi(λt(ω), ξi−1) , i = 1, 2, 3 ,

where (λt)t�0 is a stochastic process evolving on a parameter space Λ encoding all
relevant internal and external random factors upon which the dynamics of the circuit
depends. This yields a system which is now effectively parametrized by a random
outcome ω.

When (λt)t�0 is stationary, in other words, when

P(λt1+s ∈ A1, . . . , λtk+s ∈ Ak) ≡ P(λt1 ∈ A1, . . . , λtk ∈ Ak) ,

system (1.1) can be canonically rewritten as a random differential equation (RDE )

(1.2) ξ̇i = ai(θtω)ξi + hi(θtω, ξi−1) , i = 1, 2, 3 ,
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u1 �� X1
h1(ξ1) �� u2 �� X2

h2(ξ2) �� u3 �� X3
h3(ξ3) ��

Fig. 2. Decomposition of the biochemical circuit from Figure 1 into input/output modules. In
each panel, ui indicates the input into the node Xi and hi(ξi) indicates the ensuing readout—a
function of the current state of the system.

driven by a measure-preserving group action θ : R�0×Ω → Ω on the probability space
induced on ΛR�0 by (λt)t�0. Under suitable hypotheses, (1.2) generates an RDS in
the sense of Arnold [2]. This is the framework within which we shall analyze systems
such as (1.1). More specifically, we will be concerned with global convergence to a
unique equilibrium, in a sense we shall make precise further down.

The nonlinearity implied in the hi’s makes this system difficult to study directly.
Since (1.2) is not cooperative with respect to any orthant cone-induced partial order,
one cannot directly analyze (1.2) using global convergence results from the theory
of monotone RDS [6, 5]. To overcome these difficulties, we present a decomposition-
based alternative inspired on the works of Angeli, Enciso, and Sontag on deterministic
systems in [1, 12]. The idea is to look at (1.2) as a network of smaller input/output
modules (Figure 2), hopefully easier to analyze, and then derive properties of the
closed system from emerging properties of these smaller modules.

The first step is to open up the feedback loop, rewriting the model as a system
of random differential equations with inputs (RDEI )

(1.3) ξ̇i = ai(θtω)ξi + u
(i)
t (ω) , i = 1, 2, 3 ,

together with a set of outputs

(1.4) y
(i)
t (ω) = u

(i+1)
t (ω) = hi(θtω, ξi−1) , i = 1, 2, 3 .

Observe that (1.3) is now linear and monotone (with respect to the positive orthant
cone-induced partial orders) on both state and input variables and therefore much
easier to study. In fact, in this particular example, if the group action θ is ergodic
and the degradation rates a are negative on average, then one can show that (1.3)
has a unique, globally attracting equilibrium K(u) for each stationary input u. We
call the map K so defined the input-to-state characteristic (I/S characteristic) of the
system.

Once it has been established that the open-loop system is monotone, satisfies
certain growth conditions, and possesses a sufficiently regular I/S characteristic, the
next step is to look at the gain of the system. The output function is read at K(u)
for each stationary input u, and an operator KY is so defined on the space of sta-
tionary inputs. If this operator has a unique, globally attracting fixed point, then the
input/output system (1.3)–(1.4) is said to satisfy the small-gain condition. One way
to interpret this is to say that the procedure of successfully feeding an input into the
system, waiting for a while, reading out the state of the system, then feeding it back
into the system, and so on, does not lead to blow ups if the initial input does not blow
up. It is not hard to believe that the closed-loop system should have equilibria under
such circumstances. Monotonicity assumptions will further constrain the behavior of
the system, and it will be possible to show that it has, in fact, a unique, globally
attracting equilibrium.

2. Asymptotic behavior of MPDS-driven stochastic processes. In this
section, we review the concept of MPDS, originally introduced by Arnold and studied
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in [2]. Without making stronger assumptions, we supplement Arnold’s framework
with several new pieces of notation and concepts. In particular, we carefully define
growth conditions and modes of convergence which assimilate the already established
concept of temperedness for random variables in the context of measure-preserving
dynamical systems [6]. These will greatly facilitate our later study of the asymptotic
behavior of RDSIO.

2.1. Measure-preserving dynamical systems. Whenever X is a topologi-
cal space, we use the notation B(X) for the σ-algebra of Borel subsets of X . An
MPDS (also called a “metric dynamical system” in the RDS literature) is an ordered
quadruple

θ = (Ω,F ,P, (θt)t∈T )

consisting of a probability space (Ω,F ,P), a directed topological group (T ,+,�), and
a measurable flow (θt)t∈T of invertible, measure-preserving maps Ω → Ω. That is,

θ : T × Ω −→ Ω

is a (B(T )⊗F)-measurable group action (meaning that θt+sω = θtθsω for all s, t ∈ T
and ω ∈ Ω) with the property that P ◦ θt = P for each t ∈ T . In this context, a set
B ∈ F is said to be θ-invariant if θt(B) = B for all t ∈ T . The MPDS is said to be
ergodic if, given B ∈ F , θtB = B for all t ∈ T implies P(B) = 0 or P(B) = 1.

It is often the case that a condition depending on ω ∈ Ω is stated to be satisfied
for all ω ∈ Ω̃, for some θ-invariant Ω̃ ⊆ Ω of full measure (that is, θtΩ̃ = Ω̃ for all

t ∈ T , and P(Ω̃) = 1), while the subset Ω̃ itself need not be specified. Whenever this
is the case, we shall say simply “for θ-almost all ω ∈ Ω” or write

∀̃ω ∈ Ω

to mean “for all ω ∈ Ω̃, for some θ-invariant Ω̃ ⊆ Ω of full measure.”
LetX be a topological space, and consider the measurable space (X,B(X)). In the

context of RDS, the analogue of a point in the state spaceX for a deterministic system
is a random variable Ω → X , that is, a Borel-measurable map Ω → X . In this work
we use the terms “random variable” and “Borel-measurable map” interchangeably.
We denote the family of all random variables Ω → X by XΩ

B .
Denote T�0 := {t ∈ T ; t � 0}. Now the analogue of deterministic paths T�0 → X

will be θ-stochastic processes T�0×Ω → X ; in other words, (B(T�0)⊗F)-measurable
maps T�0 × Ω → X . Given any such map q, we write

qt := q(t, ·) : Ω → X , t � 0 .

In particular, qt ∈ XΩ
B for every t � 0. In this work we use the terms “θ-stochastic

process” and “trajectory” interchangeably. The family of all θ-stochastic processes
T�0×Ω → X shall be denoted by SX

θ . Of course, a θ-stochastic process is a stochastic
process in the traditional sense; we use the prefix “θ-” only to emphasize the underly-
ing probability space (Ω,F ,P) and directed topological time semigroup T�0 specified
by the given MPDS.

We identify random variables and θ-stochastic processes which agree θ-almost
everywhere. More precisely, given a, b ∈ XΩ

B , we will often abuse notation and write
a = b as long as a(ω) = b(ω) for θ-almost every ω ∈ Ω. Similarly, given q, r ∈ SX

θ , we
shall write q = r so long as qt(ω) = rt(ω) for every t � 0, for θ-almost every ω ∈ Ω.
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We discuss next an analogue, in the stochastic setting, of constant deterministic
paths. For each s ∈ T�0, set

(2.1) ρs : SX
θ −→ SX

θ : q 
−→ ρs(q)

by

(2.2) [ρs(q)]t(ω) := qt+s(θ−sω) , (t, ω) ∈ T�0 × Ω .

A θ-stochastic process q̄ ∈ SX
θ is said to be θ-stationary if

ρs(q̄) = q̄ ∀s � 0 ,

in the sense of the θ-almost everywhere identification describe above, but with the
same exceptional θ-invariant subset of probability zero of Ω for each s � 0—that is,

[ρs(q̄)]t(ω) = q̄t(ω) ∀̃ω ∈ Ω , ∀t � 0 , ∀s � 0 .

We showed in [23] that a θ-stochastic process q̄ ∈ SX
θ is θ-stationary if and only if

there exists a random variable q ∈ XΩ
B such that

(2.3) q̄t(ω) = q(θtω) ∀̃ω ∈ Ω , ∀t � 0 .

In this case we say that q̄ is generated by q. Observe that the generator q is uniquely
determined, up to a θ-invariant set of measure zero, by

q(ω) = q̄0(ω) ∀̃ω ∈ Ω .

We shall always use an overbar to denote the θ-stationary θ-stochastic process q̄ gen-
erated by a given random variable q. Observe that θ-stationary θ-stochastic processes
reduce to constant paths in case Ω is a singleton.

Finally, we discuss how θ-stochastic processes may be concatenated. For each
s � 0, we define an operator ♦s : SX

θ × SX
θ → SX

θ as follows. Given any ξ, ζ ∈ SX
θ ,

the trajectory ξ♦sζ shall consist of the truncation of ξ at time s, “continued” by ζ
from then onward. Since ζ starts to run s units of time later, the ω-argument must
be shifted accordingly. More precisely, we define ξ♦sζ : T�0 × Ω → X by

(ξ♦sζ)t(ω) =

{
ξt(ω) , 0 � t < s,

ζt−s(θsω) , s � t,
(t, ω) ∈ T�0 × Ω .

When Ω is a singleton, this construction reduces to the standard deterministic way
of concatenating paths.

2.2. Precompact trajectories. Throughout this work, we will refer for sim-
plicity to a Banach space which is partially ordered by a solid, normal, minihedral
cone simply as a BMNSO space. See Appendix A for precise definitions and elemen-
tary properties. Unless otherwise specified, we shall assume X and U to be closed
order-intervals of separable BMNSO spaces, though not necessarily the same underly-
ing space for both X and U . Typical examples would be closed rectangles in R

n (such
as an orthant or a product of finite intervals), with the order associated to the nonneg-
ative orthant cone, which induces in it the northeast partial order in which vectors are
compared coordinatewise. BMNSO spaces are the setting of the main result in this
work, namely, Theorem 4.4, the small-gain theorem for RDS. The assumption that X
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and U be closed order-intervals guarantees that infima and suprema of subsets of X
or U , when they exist, also belong to the set. Much of what will be discussed would
still make sense in a more general setting, but this assumption greatly simplifies the
presentation.

A much more subtle assumption we shall tacitly make is that the probability
space (Ω,F ,P) constituting the underlying MPDS is complete; that is, every subset of
a set of probability zero is measurable. This assumption will simplify the presentation
with regards to measurability matters, as noted in Remark 2.4 following Definition
2.3.

Finally, we shall assume that the underlying directed topological group T is always
either Z or R. In particular, T�0 always contains a sequence going to infinity, which
shall also come in handy in establishing measurability properties.

Recall that the pullback of a θ-stochastic process ξ ∈ SX
θ is the θ-stochastic

process ξ̌ ∈ SX
θ defined by

ξ̌t(ω) := ξt(θ−tω) , (t, ω) ∈ T�0 × Ω .

In this work asymptotic behavior will be considered in the pullback sense. We will
always use the check mark ˇ to indicate the pullback of the θ-stochastic process being
accented.

We introduce a few more concepts pertaining to the asymptotic behavior of θ-
stochastic processes.

Definition 2.1 (tails). The tail ( from moment τ) of the pullback trajectories of
a θ-stochastic process ξ ∈ SX

θ is the set-valued function βτ
ξ : Ω → 2X\{∅} defined by

βτ
ξ (ω) := {ξt(θ−tω) ; t � τ} , ω ∈ Ω ,

for each τ � 0.
Definition 2.2 (precompact trajectories). A θ-stochastic process ξ ∈ SX

θ is said
to be precompact if β0

ξ (ω) is precompact for θ-almost all ω ∈ Ω. We shall denote the

family of all precompact θ-stochastic processes T�0 × Ω → X by KX
θ .

Note that βτ
ξ (ω) ⊆ βσ

ξ (ω) whenever τ � σ � 0. So, from this definition it follows
that also βτ

ξ (ω) is precompact for every τ � 0, for θ-almost every ω ∈ Ω.
Let us further motivate the definitions just introduced. When Ω = {ω} is a

singleton—that is, in the deterministic case—the tail from moment τ of the pullback
trajectory of a θ-stochastic process ξ ∈ SX

θ reduces to the image from t = τ onward
of the given (deterministic) path. So, Definition 2.1 generalizes this concept from the
deterministic theory. Definition 2.2 then generalizes the property that the image of
a deterministic path is precompact, asking that this be true θ-almost surely in the
stochastic scenario.

Precompact θ-stochastic processes evolving on a separable BMNSO space are
particularly well-behaved. In this section we shall develop notions of lim inf and
lim sup for such processes. These concepts will be the backbone of the constructions
leading up to Theorems 3.13 (random CICS) and 4.4 (small-gain theorem).

It follows from Proposition A.4 that the infima and suprema in the definition
below are well-defined random variables. It follows from the tacit assumption that X
is a closed order-interval that they belong to X . Measurability is a more complicated
issue which we discuss in the remark right after the definition.

Definition 2.3 (lower and upper tails). Given a precompact trajectory ξ ∈ KX
θ ,

the net (aτ )τ�0 of random variables Ω → X defined by

aτ (ω) := inf βτ
ξ (ω) = inf

t�τ
ξt(θ−tω) , ω ∈ Ω , τ � 0 ,
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is referred to as the lower tail ( of the pullback trajectories ) of ξ. Similarly, the net
(bτ )τ�0 of random variables Ω → X defined by

bτ (ω) := supβτ
ξ (ω) = sup

t�τ
ξt(θ−tω) , ω ∈ Ω , τ � 0 ,

is referred to as the upper tail ( of the pullback trajectories ) of ξ.
Remark 2.4. The measurability of the aτ ’s and bτ ’s in the above definition is

a subtle issue. We shall not discuss it here in too much detail lest it distract us
from our primary objective in this work—the small-gain theorem. We do, however,
briefly describe how it can be settled with well-established results and techniques
from the theory of random sets, then refer the reader to [21] for a more thorough
account. After a simple reduction [15, Proposition 1.4, p. 142], one may apply the
measurable projection theorem [8, Proposition 8.4.4, p. 281] to show that the tails
βτ
ξ of the pullback trajectories of ξ are random sets. (Recall that, given a topological

space X , a multifunction D : Ω → 2X is said to be a random set (or measurable) if
M−1(U) := {ω ∈ Ω ; D(ω) ∩ U �= ∅} is F -measurable for every open U ⊆ X .) This
is where the assumption that the underlying space X is separable is needed. The
argument goes along the lines of the proof of [6, Proposition 1.5.1, pp. 32–33]. This
is where the assumption that (Ω,F ,P) is complete comes in; otherwise we can only
guarantee measurability with respect to the σ-algebra of “universally measurable”
subsets of Ω associated with the underlying measurable space (Ω,F)—which may be
larger than F . It then follows from Proposition A.4 and [6, Theorem 3.2.1, p. 90] that
aτ and bτ are measurable random variables for each τ � 0.

Since βτ
ξ ⊆ βσ

ξ whenever τ � σ � 0, it follows straight from the definition of
infima and suprema that

(2.4) aσ � aτ � bτ � bσ ∀τ � σ � 0 ;

in other terms, the nets (aτ )τ�0 and (bτ )τ�0 are monotone. We show in the next
result that they actually converge.

Lemma 2.5. Suppose that X is a separable BMNSO space. Let ξ : T�0×Ω → X be
any precompact θ-stochastic process, and let (aτ )τ�0 and (bτ )τ�0 be, respectively, the
lower and the upper tails of the pullback trajectories of ξ. Then (aτ )τ�0 and (bτ )τ�0

both converge θ-almost everywhere. Furthermore, setting

a∞ := lim
τ→∞

aτ and b∞ := lim
τ→∞

bτ ,

we have

(2.5) aσ � aτ � a∞ � b∞ � bτ � bσ ∀τ � σ � 0 .

Proof. Fix ω ∈ Ω arbitrarily such that β0
ξ (ω) is precompact. We shall show

that every sequence (τn)n∈N going to infinity in T�0 has a subsequence along which
(aτ (ω))τ�0 converges to the same a∞(ω) ∈ X . Thus (aτ (ω))τ�0 must itself converge
to a∞(ω).

Passing to a subsequence, if necessary, we may assume without loss of generality
that (τn)n∈N is nondecreasing, so, (aτn(ω))n∈N is also nondecreasing in view of (2.4).
Note that

aτn(ω) ∈
(
− shell(−β0

ξ (ω))
)

∀n ∈ N .
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Since β0
ξ (ω) is precompact by hypothesis, so is −β0

ξ (ω), and it then follows from

Theorem A.6 that − shell(−β0
ξ (ω)) is compact. Hence (aτn(ω))n∈N converges to some

a∞(ω) ∈ X by monotonicity [29, Lemma 1.2, p. 3]. Given any other sequence (σn)n∈N

going to infinity in T�0, we may use the same argument, passing into a subsequence,
if necessary, to conclude that (aσn)n∈N converges to some ã∞(ω) ∈ X . It remains to
show that a∞(ω) = ã∞(ω).

Choose subsequences (kn)n∈N and (ln)n∈N of (n)n∈N such that

τn � σkn and σn � τln ,

and so

aτn(ω) � aσkn
(ω) and aσn(ω) � aτln (ω) ∀n ∈ N .

Taking the limit as n goes to infinity, we obtain

a∞(ω) � ã∞(ω) and ã∞(ω) � a∞(ω) ,

showing that indeed a∞(ω) = ã∞(ω).
Since β0

ξ (ω) is precompact for θ-almost all ω ∈ Ω, a map a∞ : Ω → X is thus
well-defined θ-almost everywhere by

a∞(ω) := lim
τ→∞

aτ (ω) , ω ∈ Ω .

In particular,

a∞ := lim
n→∞

aτn

for any sequence (τn)n∈N going to infinity in T�0. So, measurability follows from [19,
Chapter 11, section 1, Property M7, p. 248].

The proof that (bτ )τ�0 converges θ-almost everywhere to a random variable
b∞ : Ω → X proceeds along the same lines. We obtain (2.5) by fixing τ � σ ar-
bitrarily and taking the limit as τ goes to infinity in (2.4).

Remark 2.6. The key step in the proof of the proposition above was the obser-
vation that shell(β0

ξ (ω)) is compact. A simpler proof is possible in finite-dimensional
spaces. The cone V+ ⊆ V is said to be regular if every monotone, order-bounded
sequence converges in norm; that is, (vn)n∈N is convergent whenever

v1 � v2 � v3 � · · · � vn � u

for some u ∈ V . It is not difficult to show that a cone in a finite-dimensional BMNSO
space is always regular—in fact, only normality is needed. Since

aτ1(ω) � aτ2(ω) � aτ3(ω) � · · · � aτn(ω) · · · � b0(ω) ,

one could have then concluded the convergence of the sequence (aτn(ω))n∈N in a
finite-dimensional space by appealing to regularity.

Lemma 2.5 above motivates the following definition of θ-lim sup and θ-lim inf in
separable BMNSO spaces.

Definition 2.7 (θ-lim inf and θ-lim sup). Given a separable BMNSO space X
and a precompact θ-stochastic process ξ : T�0 × Ω → X, we define θ-lim ξ to be the
random variable Ω → X defined for θ-almost all ω ∈ Ω by

[θ-lim ξ](ω) := lim
τ→∞

inf βτ
ξ (ω) .
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Similarly, we define θ-lim ξ to be the random variable Ω → X defined for θ-almost all
ω ∈ Ω by

[θ-lim ξ](ω) := lim
τ→∞

supβτ
ξ (ω) .

Conversely, when we write θ-lim ξ or θ-lim ξ for some θ-stochastic process ξ : T�0 ×
Ω → X, it will be clear from the context that ξ is precompact and that the symbols
represent the random variables defined above.

It follows straight from the definition above that

θ-lim ξ � θ-lim ξ

for any precompact θ-stochastic process ξ : T × Ω → X . Moreover, we will have
equality if and only if ξ converges pointwise.

Lemma 2.8. Suppose that ξ : T�0 × Ω → X is a precompact θ-stochastic process
on a separable BMNSO space X. Then

(2.6) ξ̌t(ω) −→ ξ∞(ω) as t → ∞ ∀̃ω ∈ Ω

for some ξ∞ ∈ XΩ
B if and only if

(2.7) θ-lim ξ = θ-lim ξ = ξ∞ =: θ-lim ξ .

Proof. (⇐) Suppose that (2.7) holds for some ξ∞ ∈ XΩ
B . Let (aτ )τ�0 and (bτ )τ�0

be a lower and an upper tail of the pullback trajectories of ξ, respectively. By defini-
tion, we have

aτ (ω) � ξ̌τ (ω) � bτ (ω) ∀̃ω ∈ Ω , ∀τ � 0 .

By (2.5), we have

aτ (ω) � ξ∞(ω) � bτ (ω) ∀̃ω ∈ Ω , ∀τ � 0 .

Thus by the triangle inequality and normality,

‖ξ̌τ (ω)− ξ∞(ω)‖ � ‖ξ̌τ (ω)− aτ (ω)‖+ ‖ξ∞(ω)− aτ (ω)‖
� 2CX+‖bτ(ω)− aτ (ω)‖ ∀̃ω ∈ Ω , ∀τ � 0 ,

where CX+ � 0 is the normality constant of the underlying cone X+ ⊆ X . By the

hypothesis that θ-lim ξ = θ-lim ξ and Lemma 2.5, it follows that bτ − aτ −→ 0 as
τ → ∞ for θ-almost every ω ∈ Ω. Combining this with the inequality above, we
obtain (2.6).

(⇒) Now suppose (2.6) holds. Fix arbitrarily ω ∈ Ω such that

(2.8) ξ̌t(ω) −→ ξ∞(ω) as t → ∞ .

Then it follows from Lemma A.2 that

aτ (ω) = inf
t�τ

ξ̌t(ω) −→ ξ∞(ω) and bτ (ω) = sup
t�τ

ξ̌t(ω) −→ ξ∞(ω)

as τ → ∞. Since (2.8) holds for θ-almost all ω ∈ Ω, we conclude that (2.7) also
holds.
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Naturally, inequalities are also preserved by θ-lim inf and θ-lim sup.
Lemma 2.9. Suppose that ξ1, ξ2 : T�0 × Ω → X are precompact θ-stochastic pro-

cesses on a separable BMNSO space X. If ξ1 � ξ2, then

θ-lim ξ1 � θ-lim ξ2 and θ-lim ξ1 � θ-lim ξ2 .

Proof. We will carry out the details for θ-lim ξ1 � θ-lim ξ2 . Let (b
(1)
τ )τ�0 and

(b
(2)
τ )τ�0 be upper tails of the pullback trajectories of ξ1 and ξ2, respectively. Since

(ξ1)t(ω) � (ξ2)t(ω) ∀̃ω ∈ Ω , ∀t � 0 ,

it follows from θ-invariance that

(ξ1)t(θ−tω) � (ξ2)t(θ−tω) ∀̃ω ∈ Ω , ∀t � 0 .

Hence, for each τ � 0,

b(1)τ (ω) = sup{(ξ1)t(θ−tω) ; t � τ} � sup{(ξ2)t(θ−tω) ; t � τ} = b(2)τ (ω) ∀̃ω ∈ Ω .

By taking the limits as τ → ∞ in the inequality above, we obtain

θ-lim ξ1 = lim
τ→∞

(ξ1)τ � lim
τ→∞

(ξ2)τ = θ-lim ξ2 .

The other inequality can be proved using the same argument.

2.3. Tempered convergence and continuity. As illustrated by various ex-
amples discussed throughout [6] and [23], ω-wise convergence in the pullback sense
alone can sometimes be difficult to work with. It is often desirable to have some
control over the growth of trajectories along the orbits of the group action θ. We now
conceptualize a notion of tempered convergence and the notion of continuity derived
from it.

A nonnegative, real-valued random variable r : Ω → R�0 is said to be tempered if

(2.9) Kγ,ω := sup
s∈T

r(θsω) e
−γ|s| < ∞ ∀γ > 0 , ∀̃ω ∈ Ω .

More generally, a random variable R : Ω → X is said to be tempered if r := ‖R‖ : Ω →
R�0 is tempered in the sense above. We denote the family of tempered random
variables Ω → X by XΩ

θ .
We note that the θ-invariant subset of full measure on which (2.9) holds can be

constructed so as to be independent of γ > 0. We also note that the family XΩ
θ of

tempered random variables Ω → X is a module over the family R
Ω
θ of real-valued

tempered random variables, with operations of addition and scalar multiplication
defined ω-wise. Finally, observe that if r1, r2 : Ω → X are random variables such that
‖r1‖ � ‖r2‖ and r2 is tempered, then r1 is also tempered.

Definition 2.10 (tempered convergence). We say that a net (ξα)α∈A in XΩ
B

converges in the tempered sense to a random variable ξ∞ ∈ XΩ
B if there exists a

nonnegative, tempered random variable r : Ω → R�0 and an α0 ∈ A such that
(1) ξα(ω) −→ ξ∞(ω) for θ-almost all ω ∈ Ω, and
(2) ‖ξα(ω)− ξ∞(ω)‖ � r(ω) for all α � α0, for θ-almost all ω ∈ Ω.

In this case we write ξα →θ ξ∞.
Definition 2.11 (tempered continuity). A map

K : U ⊆ UΩ
B −→ XΩ

B

is said to be tempered continuous if K(uα) →θ K(u∞) for every net (uα)α∈A in U
such that uα →θ u∞ for some u∞ ∈ U .
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2.4. Tempered trajectories.

Definition 2.12 (tempered trajectories). A θ-stoschastic process ξ ∈ SX
θ is said

to be tempered if there exists a nonnegative, tempered random variable r : Ω → R�0

such that

(2.10) ‖x‖ � r(ω) ∀̃ω ∈ Ω , ∀x ∈ β0
ξ (ω) ;

in other words,

(2.11) ‖ξ̌t(ω)‖ = ‖ξt(θ−tω)‖ � r(ω) ∀̃ω ∈ Ω , ∀t � 0 .

The family of all tempered θ-stochastic processes T�0×Ω → X shall be denoted by VX
θ .

Observe that, by virtue of θ-invariance, condition (2.11) is equivalent to

‖ξt(ω)‖ � r(θtω) ∀̃ω ∈ Ω , ∀t � 0 .

The idea here is to have a term to talk about θ-stochastic processes which, as far
as their oscillatory behavior is concerned, look somewhat like a θ-stationary process
generated by a tempered random variable. Indeed, it is not difficult to show that the
θ-stationary θ-stochastic process generated by a tempered variable is also tempered.
Furthermore, any shift ρs(ξ) of a tempered trajectory ξ is again a tempered trajectory,
and any θ-concatenation ξ♦sζ of tempered trajectories ξ and ζ is also tempered.

If ξ is a tempered trajectory, then it follows from (2.11) that β0
ξ (ω) is bounded

for θ-almost every ω ∈ Ω. Consequently, tempered trajectories are automatically
precompact if the underlying space X is finite-dimensional. Note, however, that the
converse of this statement is not necessarily true—a precompact trajectory need not
be tempered, even in finite-dimensional spaces.

Proposition 2.13. If ξ ∈ SX
θ is a tempered trajectory and ξ∞ : Ω → X is a map

such that

ξt(θ−tω) −→ ξ∞(ω) as t → ∞ ∀̃ω ∈ Ω ,

then ξ∞ is a tempered random variable. Furthermore, in that case convergence is
tempered.

Proof. It follows again from [19, Chapter 11, section 1, Property M7, p. 248] that
ξ∞ is measurable. (View ξ∞ as the limit along a sequence (tn)n∈N going to infinity in
T�0.) Let r : Ω → R�0 be a nonnegative, tempered random variable such that (2.11)
holds. Then, by continuity of the norm,

‖ξ∞(ω)‖ = lim
t→∞

‖ξt(θ−tω)‖ � r(ω) ∀̃ω ∈ Ω .

Thus ξ∞ is tempered. By the triangle inequality,

‖ξt(θ−tω)− ξ∞(ω)‖ � 2r(ω) ∀̃ω ∈ Ω , ∀t � 0 .

Thus convergence occurs indeed in the tempered sense.

Corollary 2.14. Suppose that ξ : T�0 × Ω → X is a precompact, tempered θ-
stochastic process on X. Then θ-lim ξ and θ-lim ξ are tempered random variables, and
convergence of the tails (aτ )τ�0 and (bτ )τ�0 to θ-lim ξ and θ-lim ξ, respectively, occur
in the tempered sense.
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3. RDSIO. We are now ready to define the concept of RDSIO.

3.1. RDSI. We first discuss inputs.
Definition 3.1 (θ-inputs). We say that a subset U ⊆ SU

θ is a class of θ-inputs
if it has the following closure properties:

(J1) ρs(u) ∈ U for any u ∈ U and any s � 0, and
(J2) u♦sv ∈ U for any u, v ∈ U and any s � 0.
Example 3.2 (θ-inputs). We discuss here several natural classes of θ-inputs.
(A) The family VU

θ of tempered θ-stochastic processes T�0 × Ω → U is a class
of θ-inputs. Moreover, UΩ

θ ⊆ VU
θ , where we will identify, here and later, UΩ

θ with
the subset of SU

θ consisting of the θ-stationary θ-stochastic processes T�0 × Ω → U
generated by tempered random variables Ω → U .

(B) The family KU
θ of precompact θ-stochastic processes T�0 × Ω → U also sat-

isfies (J1) and (J2), thus constituting a class of θ-inputs as well. However, it is not
necessarily true, in general, that UΩ

θ ⊆ KU
θ —even in finite dimensions.

(C) We introduce a third notable class of θ-inputs, namely, the family SU
∞ con-

sisting of all θ-stochastic processes u ∈ SU
θ such that

t 
−→ |ut(ω)| , t � 0 ,

is locally essentially bounded for each ω ∈ Ω. Note that

t 
−→ u(θtω) , t � 0 ,

is locally essentially bounded for θ-almost every ω ∈ Ω whenever u is a tempered
random variable. Therefore UΩ

θ ⊆ SU
∞.

(D) Finally, note that the arbitrary intersection of classes of θ-inputs is a class of
θ-inputs. In particular, VU

θ ∩KU
θ , VU

θ ∩ SU
∞, KU

θ ∩ VU
θ , and VU

θ ∩KU
θ ∩ SU

∞ are classes
of θ-inputs. Furthermore, UΩ

θ ⊆ VU
θ ∩ SU

∞.
Definition 3.3 (RDSI). An RDSI is an ordered triple (θ, ϕ,U) consisting of an

MPDS θ = (Ω,F ,P, (θt)t∈T ), a class of θ-inputs U ⊆ SU
θ , and a map

ϕ : T�0 × Ω×X × U → X

satisfying
(I1) ϕu := ϕ(·, ·, ·, u) : T�0×Ω×X → X is (B(T�0)⊗F ⊗B)-measurable for each

fixed u ∈ U ;
(I2) ϕ(t, ω, ·, u) : X → X is continuous for each fixed (t, ω, u) ∈ T�0 × Ω× U ;
(I3) ϕ(0, ω, x, u) = x for each (ω, x, u) ∈ Ω×X × U ;
(I4) for any s, t � 0, ω ∈ Ω, x ∈ X, and u, v ∈ U ,

[ϕ(s, ω, x, u) = y & ϕ(t, θsω, y, v) = z] ⇒ z = ϕ(s+ t, ω, x, u♦sv) ;

(I5) given any t � 0, ω ∈ Ω, x ∈ X, and u, v ∈ U , if uτ (ω) = vτ (ω) for Lebesgue-
almost all τ ∈ [0, t), then ϕ(t, ω, x, u) = ϕ(t, ω, x, v).

Remark 3.4. An immediate consequence of the above definition is that,
(I4′) for each arbitrarily fixed s, t � 0, x ∈ X , and ω ∈ Ω,

ϕ(t+ s, ω, x, u) = ϕ(t, θsω, ϕ(s, ω, x, u), ρs(u)) ∀u ∈ U .

Indeed, we have

u♦sρs(u) = u ∀u ∈ SU
θ .

Thus (I4′) follows straight from (I4) with v = ρs(u).
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Example 3.5 (RDSI generated by RDEI).. In this example we shall give sufficient
conditions for an RDEI,

ξ̇ = f(θtω, ξ, ut(ω)) , t � 0 , ω ∈ Ω , u ∈ U ,

to generate an RDSI. This effectively amounts to solving a family of ordinary differen-
tial equations (ODE) parametrized by ω ∈ Ω, with some special attention devoted to
emerging measurability concerns, and can be done with ideas from standard existence
and uniqueness theorems for ODE combined with textbook measure theory tools (for
which we omit the details).

Given a Borel subset U ⊆ R
k and a set U of θ-inputs R�0 ×Ω → U , we shall say

that an (F ⊗ B(Rn)⊗ B(U))-measurable map f : Ω× R
n × U → R

n is a θ-righthand
side (with respect to U) if

(R1) f(ω, ·, u) : Rn → R
n is locally Lipschitz for every ω ∈ Ω and every u ∈ U , and

(R2) for each ω ∈ Ω, every u ∈ U , and any b > a � 0,∫ b

a

‖f(θtω, ·, ut(ω))‖K dt < ∞

for every compact K ⊆ R
n.

Now suppose that f : Ω × R
n × U → R

n is a θ-right-hand side with respect to SU
∞,

and suppose that f satisfies the growth condition

(3.1) |f(ω, x, u)| � α(ω)|x| + β(ω) + c(u) ∀ω ∈ Ω , ∀(x, u) ∈ R
n × U ,

for some tempered random variables α, β : Ω → R�0 and some continuous function
c : U → R�0. Then the RDEI

(3.2) ξ̇ = f(θtω, ξ, ut(ω)) , t � 0 , ω ∈ Ω , u ∈ SU
∞ ,

generates an RDSI (θ, ϕ,SU
∞) uniquely determined by the properties that

ϕ(0, ω, x, u) = x ∀(ω, x, u) ∈ Ω× R
n × SU

∞ ,

and

(3.3)
d

dt
ϕ(t, ω, x, u) = f(θtω, ϕ(t, ω, x, u), ut(ω))

for each (ω, x, u) ∈ Ω× R
n × SU

∞, for Lebesgue-almost every t � 0.
A discrete time analogue of RDEI is given by a random difference equation with

inputs (RdEI)

ξ+ = ξn+1 := f(θnω, ξn, un(ω)) , n � 0 , u ∈ SU
θ ,

which (uniquely) generates a (discrete) RDSI (θ, ϕ,SU
θ ), characterized by the property

that

ϕ(n+ 1, ω, x, u) ≡ f(θnω, ϕ(n, ω, x, u), un(ω)) .

The construction of the flow from the one-step transitions is a simple exercise; see
details in [23].

An important subclass of RDEI (and RdEI) are RDSI generated by linear RDEI
(and RdEI). We analyze the former in more detail in Example 3.15.
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The concept of RDSI subsumes that of an RDS. Indeed, given an RDSI (θ, ϕ,U),
fix arbitrarily a θ-stationary θ-input ū ∈ U . Consistently with the convention that
an overbar is used to indicate the θ-stationary process generated by a given random
variable, we remove the bar to denote the random variable generating a given θ-
stationary process—in other words, we denote by u the (θ-almost everywhere uniquely
defined) random variable generating ū. We then define

ϕu := ϕ(·, ·, ·, ū) : T�0 × Ω×X −→ X .

Then ϕu is a crude cocycle which can be perfected (see [23, Lemma 2.3 and Proposition
2.3, pp. 64–65] for details). Thus given an RDSI (θ, ϕ,U) and a θ-stationary input u ∈
U , we shall always assume that ϕu has already been replaced by an indistinguishable
perfection and then refer to the resulting RDS (θ, ϕu).

As in [23], we define the θ-stochastic processes ξx,u : T�0 × Ω → X by

ξx,ut (ω) := ϕ(t, ω, x(ω), u), (t, ω) ∈ T�0 × Ω ∀x ∈ XΩ
B , ∀u ∈ U .

Recall our convention that a check mark ˇ indicates the pullback of the θ-stochastic
process being accented. Thus ξ̌x,ut (ω) ≡ ϕ(t, θ−tω, x(θ−tω), u).

Definition 3.6 (I/S characteristic). An RDSI (θ, ϕ,U) is said to have an I/S
characteristic K : UΩ

θ → XΩ
θ if UΩ

θ ⊆ U and

ξ̌x,ut −→θ K(u) as t → ∞

for every x ∈ XΩ
θ , for every u ∈ UΩ

θ .
We next illustrate the definitions of RDSI and I/S characteristic with a few dis-

crete time examples.
Iterated function systems in the sense of [4, Definition 1, p. 82] can be interpreted

as RDS or RDSI (see also [3]). We illustrate how their limit fractals can be realized
as the state characteristic associated with given θ-stationary θ-input.

Let θ = (Ω,F ,P, (θn)n∈T ) be the (ergodic) MPDS defined as the “Bernoulli
shift” on the probability space (Ω0,F0,P0), where Ω0 := {1, 2, 3, 4}, F0 := 2Ω0 , and
P0 : F0 → [0, 1] is defined by P0({1}) := 0.01, P0({2}) := 0.85, P0({3}) := 0.07, and
P0({4}) := 0.07; that is, Ω = ΩZ

0 , F is the σ-algebra generated by the cylinder subsets
of Ω, P is the canonical probability measure on F , and θn : Ω → Ω is the “shift n
steps to the left” operator for each n ∈ Z. Let X := R

2 and U := [0, 1]× [0, 1], and
consider the discrete RDSI (θ, ϕ,SU

θ ) generated by the RdEI

(3.4) ξ+ = A(θnω)ξ + un(ω) , n � 0 , u ∈ SU
θ ,

where A : Ω → M2×2(R) is defined as follows. First define A0 : Ω0 → M2×2(R) by

A0(1) :=

[
0 0
0 0.16

]
, A0(2) :=

[
0.85 0.04
−0.04 0.85

]
,

A0(3) :=

[
0.2 −0.26
0.23 0.22

]
, and A0(4) :=

[
−0.15 0.28
0.26 0.24

]
,

then define A by setting A(ω) := A0(ω0), ω ∈ Ω. The largest singular values of
A0(1), A0(2), A0(3), and A0(4) can be numerically estimated to be, respectively,
σmax
0 (1) = 0.16, σmax

0 (2) ≈ 0.8509, σmax
0 (3) ≈ 0.3407, and σmax

0 (4) ≈ 0.3792. Since
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Fig. 3. Tempered, pullback convergence of ϕ to K(u), starting at x = 0, at times t = 6, 10, 18.

A(ω) ≡ A0(ω0), the largest singular value of A(ω) is σmax(ω) ≡ σmax
0 (ω0) for each

ω ∈ Ω, and therefore

(3.5)

∥∥∥∥∥∥
s+r−1∏
j=s

A(θjω)

∥∥∥∥∥∥ � (σmax
0 (2))r ∀ω ∈ Ω , ∀s ∈ Z , ∀r � 0 ,

where ‖ · ‖ is the operator norm on a square matrix with respect to the Euclidean
norm on vectors (see [31, section A.2, pp. 448–451]). With this estimate, one can
show that ϕ has a continuous I/S characteristic K : UΩ

θ → XΩ
θ given by

[K(u)](ω) =

−1∑
j=−∞

⎛⎝ −1∏
k=j+1

A(θkω)

⎞⎠ u(θjω) ∀u ∈ UΩ
θ , ∀̃ω ∈ Ω .

This follows along the same lines as the the continuous-time analogue (see Example
3.15 below and [23, Example 2.3, pp. 71–76]). We briefly remark that, in order for
the I/S characteristic to exist in a linear example such as this one, it is sufficient that
Eσmax < 1. It then follows from the multiplicative ergodic theorem, once again as
in the continuous-time analogue, that (3.5) holds with the right-hand side replaced
by γ(θsω)λ

r for some λ ∈ (0, 1) and some nonnegative, tempered random variable
γ : Ω → R�0 (see Remark 3.16 below).

Now consider the θ-stationary input u ∈ UΩ
θ defined as follows. First define

u0(1) :=

[
0
0

]
, u0(2) :=

[
0
1.6

]
, u0(3) :=

[
0
1.6

]
, and u0(4) :=

[
0

0.44

]
,

then set u(ω) := u0(ω0), ω ∈ Ω. The support of the image of K(u) is the Barnsley
fern [4, Table 3.8.3, p. 87, and Figure 3.8.3, p. 92]. Figure 3 shows the results after
steps n = 6, n = 10, and n = 18 of a simulation of the pullback trajectories of ϕ
starting at x = 0 and subject to the input u defined above.

Next, consider a variation of this example. Let θ be anMPDS defined as above, ex-
cept having instead P0({1}) := 0.10, P0({2}) := 0.35, P0({3}) := 0.35, and P0({4}) :=
0.20. Define A : Ω → MR×R(2) as above via
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Fig. 4. Barnsley fern into maple leaf (iteration is top left to bottom right).

A0(1) :=

[
0.14 0.01
0 0.51

]
, A0(2) :=

[
0.43 0.52
−0.45 0.5

]
,

A0(3) :=

[
0.45 −0.49
0.47 −1.62

]
, and A0(4) :=

[
0.49 0
0 0.51

]
,

and consider the (discrete) RDSI (θ, ϕ,SU
θ ) generated by (3.4). It can be shown as

before, by looking at the largest singular values of A, that this RDSI has a continuous
I/S characteristic. The state characteristic corresponding to the θ-stationary input
u ∈ UΩ

θ defined as above via

u0(1) :=

[
−0.08
−1.31

]
, u0(2) :=

[
1.49
−0.75

]
, u0(3) :=

[
−1.62
−0.74

]
, and u0(4) :=

[
0.02
1.62

]
is a distribution over the maple leaf. Figure 4 illustrates the (pullback) convergence
to this state characteristic starting from the distribution over the Barnsley fern given
in the previous example. In this way, one translates into the formalism of RDSI
a “controllability” problem between pictures: using the input in question, we have
steered the fern into the maple leaf.

The next two definitions are growth conditions on the (pullback) long-term be-
havior of RDSI.

Definition 3.7 (tempered RDSI). An RDSI (θ, ϕ,U) is said to be tempered if
the θ-stochastic processes ξx,u are tempered for every tempered initial state x ∈ XΩ

θ

and every tempered input u ∈ U .
In the context of the above definition, given any tempered initial state x ∈ XΩ

θ

and any tempered input u ∈ U , we have

‖ξ̌x,ut (ω)‖ = ‖ϕ(t, θ−tω, x(θ−tω), u)‖ � r(ω) ∀t � 0 , ∀̃ω ∈ Ω ,

for some nonnegative, tempered random variable r. Thus ξ̌x,ut is a tempered random
variable for each t � 0.
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Definition 3.8 (compact RDSI). An RDSI (θ, ϕ,U) is said to be compact if the
θ-stochastic processes ξx,u are precompact for every tempered initial state x ∈ XΩ

θ and
every precompact input u ∈ U .

Remark 3.9. Although the context here is somewhat different, this definition is
related to the concept of compact RDS given in [6, Definition 1.4.3, p. 30]. Chueshov
does not require the “entering time” t0(ω) to be uniform in ω, while we do require
the entering time in Definition 2.2 to be t = 0 for θ-almost every ω ∈ Ω. On the other
hand, Chueshov requires the “absorbing set” to be the same for every initial state,
while we allow for it to depend on x ∈ XΩ

θ .

3.2. Monotone RDSI. Suppose that (X,�) is a partially ordered space. For
any a, b ∈ XΩ

B , we write a � b to mean that a(ω) � b(ω) for θ-almost all ω ∈ Ω.
Similarly, for any p, q ∈ SX

θ , we write p � q to mean that pt(ω) � qt(ω) for all t � 0,
for θ-almost all ω ∈ Ω. Taking into account the identification of θ-almost everywhere
equal maps discussed in subsection 2.1, this convention induces partial orders in XΩ

B
and SX

θ .

Definition 3.10 (monotone RDSI). An RDSI (θ, ϕ,U) is said to be monotone
if the underlying state and input spaces are partially ordered spaces (X,�X) and
(U,�U ), and

ϕ(·, ·, x(·), u) �X ϕ(·, ·, z(·), v)

whenever x, z ∈ XΩ
B and u, v ∈ U are such that x �X z and u �U v.

Definition 3.11 (Monotone Characteristics). Suppose (X,�X) and (U,�U )
are partially ordered spaces. A map M : E ⊆ UΩ

B → XΩ
B is said to be monotone or

order-preserving if M(u) �X M(v) whenever u, v ∈ E satisfy u �U v. Analogously,
if M(u) �X M(v) whenever u �U v, then M is said to be antimonotone or order-
reversing.

Most of the time, the underlying partially ordered space will be clear from the
context. So, unless there is any risk of confusion, we shall again drop the indices in
“�X ” and “�U” and write simply “� .”

As in the deterministic scenario, if an RDSI (θ, ϕ,U) is monotone and has an I/S
characteristic K : UΩ

θ → XΩ
θ , then K is order-preserving; in other words, if u, v ∈ UΩ

θ

and u � v, then K(u) � K(v).

Let U be a Borel subset of Rk and f : Ω× R
n × U → R

n be a θ-right-hand side,
with respect to SU

∞, satisfying growth condition (3.1). Then the RDEI

(3.6) ξ̇ = f(θtω, ξ, ut(ω)) , t � 0 , ω ∈ Ω , u ∈ SU
∞ ,

generates an RDSI (θ, ϕ,SU
∞), as we noted in Example 3.5 above. The proposition be-

low, which is essentially a ω-wise version of its deterministic analogue, gives sufficient
conditions for this RDSI to be monotone.

Proposition 3.12 (Kamke conditions). Suppose that Rn and R
k are partially

ordered by their respective positive orthant cones, that U ⊆ R
k is closed, order-convex

and has nonempty interior, and that f : Ω×R
n×U → R

n is a θ-right-hand side such
that f(ω, ·, ·) : Rn × U → R

n is continuously differentiable for θ-almost all ω ∈ Ω.
Then the RDSI (θ, ϕ,SU

∞) generated by the RDEI (3.6) is monotone if and only if, for
θ-almost every ω,

(K1) ∂fi
∂xj

(x, u) � 0 for every x ∈ R
n, every u ∈ intU , and every i, j ∈ {1, . . . , n}

such that i �= j, and
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(K2) ∂fi
∂uj

(x, u) � 0 for every x ∈ R
n, every u ∈ intU , every i ∈ {1, . . . , n}, and

every j ∈ {1, . . . , k}.
Proof. This follows from [1, Proposition III.2, p. 1687], applied for each ω ∈ Ω

such that the conditions hold.

3.3. The CICS property. Suppose an RDSI (θ, ϕ,U) has a continuous I/S
characteristic K, and then suppose that the pullback of a tempered θ-input u ∈ SU

∞
converges (in the tempered sense) to a u∞ ∈ UΩ

θ . Since

ξ̌x,u∞(ω) −→θ [K(u∞)](ω) , as t → ∞ , ∀x ∈ XΩ
θ ,

one may expect that the continuity of ϕ (with respect to the state variable) and K
would imply that

(3.7) ξ̌x,ut (ω) −→θ [K(u∞)](ω) , as t → ∞ , ∀x ∈ XΩ
θ .

Unfortunately this is not true in general. In fact, this CICS property might fail even in
the deterministic case, as illustrated by the counterexample in [28]. Other hypotheses
such as asymptotic stability of the state characteristics or monotonicity of the flow
are needed.

The CICS result below (Corollary 3.14) was first stated and proved for deter-
ministic and finite-dimensional “monotone control systems” by Angeli and Sontag [1,
Proposition V.5(2)]. In [12, Theorem 1], Enciso and Sontag explored normality to
extend the result to infinite-dimensional systems. Replacing the geometric properties
in [12] by minihedrality, it is possible to extend this result further to monotone RDSI.

We shall derive Corollary 3.14 from a more general result, given in Theorem 3.13
below. Note that if the input u converges in the pullback sense, then it is precompact.
But if we know a priori that u is precompact, then the θ-limits θ-lim u and θ-limu
exist, even if u does not converge (in the pullback sense). If the θ-limits θ-lim ξx,u and
θ-lim ξx,u also exist, then it is natural to ask how they may compare with K(θ-limu)
and K(θ-limu) .

Theorem 3.13 (sub-CICS). Suppose that X and U are separable BMNSO spaces.
Let (θ, ϕ,U) be a tempered, compact, monotone RDSI with state space X and input
space U and suppose that ϕ has a continuous I/S characteristic K : UΩ

θ → XΩ
θ . Then

K(θ-limu) � θ-lim ξx,u and θ-lim ξx,u � K(θ-limu)

for every x ∈ XΩ
θ and every tempered, precompact u ∈ U .

Proof. We work out the details for the first inequality, the proof of the second
one being entirely analogous. Fix arbitrarily a tempered initial state x ∈ XΩ

θ and
a tempered, precompact input u ∈ U . By Definitions 3.7 and 3.8, the θ-stochastic
process ξx,u is also tempered and precompact. Let (aτ )τ�0 be the lower tail of the
pullback trajectories of u. From Corollary 2.14, both θ-limu and θ-lim ξx,u exist and
define tempered random variables in their respective spaces. Furthermore,

aτ −→θ θ-limu as τ → ∞ .

Therefore K(aτ ) −→θ K(θ-limu) as τ → ∞ by continuity. So, it is enough to show
that

(3.8) K(aτn) � θ-lim ξx,u ∀n ∈ N

for an arbitrarily fixed sequence (τn)n∈N going to infinity in [0,∞).
Fix arbitrarily n ∈ N. Let āτn be the θ-stationary process generated by aτn . We

claim that
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(D1) āτn � ρτn(u), and

(D2) ξ̌x,ut = ξ̌
ξ̌x,u
τn

,ρτn (u)

t−τn for all t � τn.
Assuming (D1) and (D2), we have

ξ
ξ̌x,u
τn

,āτn
s � ξ

ξ̌x,u
τn

,ρτn (u)
s ∀s � 0

by monotonicity. Now āτn is a tempered θ-stochastic process, since aτn is a tempered
random variable. Likewise, ρτn(u) is precompact and tempered. Finally, ξ̌x,uτn is also
tempered, since it is the “pullback slice” of a tempered trajectory. We conclude that

ξ
ξ̌x,u
τn

,āτn
s is tempered and that ξ

ξ̌x,u
τn

,ρτn (u)
s is precompact and tempered. It follows

from the existence of the I/S characteristic and Lemmas 2.8 and 2.9 that

K(aτn) = θ-lim ξξ̌
x,u
τn

,āτn � θ-lim ξξ̌
x,u
τn

,ρτn (u) = θ-lim ξx,u .

Since n ∈ N was chosen arbitrarily, this proves (3.8).
It remains to prove (D1) and (D2). They each follow straight from the relevant

definitions. Indeed, for any t � 0 and any ω ∈ Ω for which āτn(ω) is defined, we have

[āτn ]t(ω) = aτn(θtω) = inf
s�τn

us(θ−sθtω) � uτn+t(θ−(τn+t)θtω) = [ρτn(u)]t(ω) .

This proves (D1). For any t � τn and any ω ∈ Ω, we have

ξ̌x,ut (ω) = ϕ(t− τn + τn, θ−(t−τn)−τnω, x(θ−(t−τn)−τnω), u)

= ϕ(t− τn, θ−(t−τn)ω, ϕ(τn, θ−τnθ−(t−τn)ω, x(θ−τnθ−(t−τn)ω), u), ρτn(u))

= ϕ(t− τn, θ−(t−τn)ω, ξ̌
x,u
τn (θ−(t−τn)ω), ρτn(u))

by (I4′). This establishes (D2).
Corollary 3.14 (random CICS). Assume the same hypotheses as in Theorem

3.13. If u ∈ U is tempered and

(3.9) ǔt −→θ u∞ as t → ∞

for some u∞ ∈ UΩ
θ , then

(3.10) ξ̌x,ut −→θ K(u∞) as t → ∞ ∀x ∈ XΩ
θ .

Proof. Fix arbitrarily x ∈ XΩ
θ . As noted above, the tempered convergence in

(3.9) implies u is precompact. So, by Theorem 3.13 and Lemma 2.8,

K(u∞) � θ-lim ξx,u � θ-lim ξx,u � K(u∞) .

It follows again by Lemma 2.8 that

θ-lim ξx,u = θ-lim ξx,u = θ-lim ξx,u = K(u∞) ,

yielding (3.10).
Example 3.15 (linear RDSI). Set X := R

n, U := R
k, and U := SU

∞. Suppose that

A : Ω −→ Mn×n(R) and B : Ω −→ Mn×k(R)

are random matrices such that

t 
−→ A(θtω) , t � 0 , and t 
−→ B(θtω) , t � 0 ,
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are locally essentially bounded for each ω ∈ Ω. Then the RDEI

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t � 0 , ω ∈ Ω , u ∈ U ,

generates an RDSI (θ, ϕ,U), since the hypotheses in Example 3.5 are satisfied. We
will present sufficient conditions for this RDSI to be tempered and precompact and to
possess a continuous I/S characteristic. Further down we will also discuss hypotheses
guaranteeing that the RDSI is monotone (with respect to the positive orthant cone-
induced partial order).

Assume that
(L1) B is tempered, and
(L2) there exist a λ > 0 and a nonnegative, tempered random variable γ ∈ (R�)Ωθ

such that the fundamental matrix solution

Ξ: R× R× Ω −→ Mn×n(R)

of

ξ̇ = A(θtω)ξ , t � 0 , ω ∈ Ω ,

satisfies

‖Ξ(s, s+ r, ω)‖ � γ(θsω) e
−λr ∀̃ω ∈ Ω , ∀s ∈ R , ∀r � 0 .

Then (θ, ϕ,U) is tempered and has a tempered-continuous I/S characteristicK : UΩ
θ →

XΩ
θ , given by

[K(u)](ω) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ ∀u ∈ UΩ

θ , ∀̃ω ∈ Ω .

Since this system is evolving in a finite-dimensional space, precompactness follows
from temperedness, as noted before. We refer to [23, Example 2.3, pp. 71–76] for the
details.

We now discuss monotonicity. Equip R
n and R

k with their respective positive
orthant cone-induced partial orders. Let X := R

n
�0 and U := R

k
�0, which are closed

order-intervals. If all off-diagonal entries of A(ω) are nonnegative for θ-almost every
ω ∈ Ω, and all entries of B(ω) are nonnegative for θ-almost every ω ∈ Ω, then it
follows from Proposition 3.10 that (θ, ϕ,SU

∞) is monotone.
Remark 3.16. If ‖A(·)‖ ∈ L1(Ω,F ,P), the largest eigenvalue λ(·) of the Hermitian

part of A(·) is such that

Eλ :=

∫
Ω

λ(ω) dP(ω) < 0 ,

and the underlying MPDS θ is ergodic, then it follows from [6, Theorem 2.1.2, p. 60]
that (L2) holds with λ := −(Eλ+ ε) for any choice of ε ∈ (0,−Eλ).

3.4. Output functions. We want to consider the RDE

(3.11) ξ̇ = A(θtω)ξ +B(θtω)h(θtω, ξ) , t � 0 , ω ∈ Ω ,

for several classes of nonlinearity h : Ω × R
n
�0 → R

k
�0. In each of Examples 4.5–4.7

below, we will apply Theorem 4.4 to show that the RDS generated by (3.11) has a
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unique, globally attracting, positive equilibrium. Our approach is to realize (3.11) as
the “closed loop” of the RDSI from Example 3.15 and its “output function” h. In
this section we will make these ideas precise.

Definition 3.17 (output functions). An output function is a (F ⊗ B(X))-
measurable map h : Ω×X → Y into a separable BMNSO space Y such that

h(ω, ·) : X −→ Y

is continuous for each ω ∈ Ω. In this context Y is called an output space.
Definition 3.18 (RDSIO). An RDSIO is a quadruple (θ, ϕ,U , h) such that

(θ, ϕ,U) is an RDSI and h is an output function.
The Ω-component in the domain of output functions is important. It allows for

the concept to model uncertainties in the readout as well.
It can be shown that if D : Ω → 2X\{∅} is a random set in X , then

ω 
−→ h(ω,D(ω)) := {h(ω, x) ; x ∈ D(ω)} , ω ∈ Ω ,

is a random set in Y . In particular, if D is compact, then so is h(·, D(·)). (Refer to
Remark 2.4.)

Given an output function h, we define its induced output characteristic h∗ : X
Ω
B →

Y Ω
B by

[h∗(x)](ω) := h(ω, x(ω)) , ω ∈ Ω ,

for each x ∈ XΩ
B . This is the natural way to map random states x ∈ XΩ

B into random
readouts y ∈ Y Ω

B , generalizing what is accomplished by the output function h : X → Y
itself in the deterministic setting.

In the context of “closed-loop systems,” “cascades,” and “feedback interconnec-
tions,” we shall be particularly interested in output funcions h such that h∗(X

Ω
θ ) ⊆

Y Ω
θ .

Definition 3.19 (temperedness preserving outputs). An output function

h : Ω×X −→ Y

is said to preserve temperedness if the random set

h(·, D(·)) : Ω −→ 2Y \{∅}

is tempered for every tempered random set D : Ω → 2X\{∅}.
In particular,

ω 
−→ h(ω, x(ω)) ω ∈ Ω ,

defines a tempered random variable Ω → Y whenever x : Ω → X is also a tempered
random variable. Therefore h∗(X

Ω
θ ) ⊆ Y Ω

θ whenever h is a temperedness preserving
output function.

In examples and applications, temperedness preservation will typically arise as a
consequence of growth conditions on the output function. For instance, if

(G1) there exist M0,M1 ∈ (R�0)
Ω
θ and n ∈ N such that

‖h(ω, x)‖ � M0(ω) +M1(ω)‖x‖n ∀x ∈ X, ∀̃ω ∈ Ω

(tempered polynomial growth),
then h is temperedness preserving.
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If h is a temperedness preserving output function, then it is not difficult to show
that the θ-stochastic process ηξ : T�0 × Ω → Y defined by

ηξt (ω) := h(θtω, ξt(ω)) , (t, ω) ∈ T�0 × Ω ,

is tempered whenever ξ : T�0 × Ω → X is a tempered θ-stochastic process in X .
Furthermore, the restriction h∗

∣∣
XΩ

θ

: XΩ
θ → Y Ω

θ of the induced output characteristic

to XΩ
θ is tempered continuous.
Definition 3.20 (I/O characteristic). Suppose that an RDSIO (θ, ϕ,U , h) is

such that the underlying RDSI (θ, ϕ,U) has an I/S characteristic K : UΩ
θ → XΩ

θ , and
the output function h preserves temperedness. Then the induced output characteristic
h∗ : X

Ω
θ → Y Ω

θ of (θ, ϕ,U , h) is well-defined, and so the map

KY := h∗ ◦ K : UΩ
θ −→ Y Ω

θ

is also well-defined. In this case the system is said to have an input-to-output (I/O)
characteristic and, accordingly, KY is referred to as the I/O characteristic of the
system.

In the particular case when Y = U , the I/O characteristic is an operator on
the space UΩ

θ of tempered random variables Ω → U . This operator can be informally
interpreted as the “gain” of the system, a measure of how much a θ-stationary “signal”
u changes when “processed” by the system.

Definition 3.21 (monotone and antimonotone outputs). Let (X,�X) and
(Y,�Y ) be partially ordered spaces. An output function h : Ω × X → Y is said to
be monotone if

∀̃ω ∈ Ω , x1 �X x2 ⇒ h(ω, x1) �Y h(ω, x2) .

Analogously, if

∀̃ω ∈ Ω , x1 �X x2 ⇒ h(ω, x1) �Y h(ω, x2) ,

then h is said to be antimonotone.
As usual, the underlying partial order will be clear from the context and we shall

use simply � to denote either of �X or �Y . Furthermore, whenever we refer to a
“monotone RDSI,” an “order-preserving map,” etc., the underlying spaces will be
tacitly understood to be partially ordered. Note that the induced output character-
istic h∗ is order-preserving (order-reversing) whenever h : Ω×X → Y is a monotone
(antimonotone) output function.

Definition 3.22 (closed-loop trajectory). A θ-stochastic process ξ ∈ SX
θ is said

to be a closed-loop trajectory of an RDSIO (θ, ϕ,U , h) (starting at ξ0) if
(1) Y = U ,
(2) the θ-stochastic process ηξ : T�0 × Ω −→ U defined by

ηξt (ω) := h(θtω, ξt(ω)) , t � 0 , ω ∈ Ω ,

belongs to U , and
(3) ξt(ω) = ϕ(t, ω, ξ0(ω), η

ξ) for all t � 0 and all ω ∈ Ω.
Property (1) is quite natural. It does not make sense to talk about feeding the

output of the system back into it, thus “closing the loop,” if the output and input
spaces do not coincide. The θ-stochastic process ηξ defined in property (2) is the
“readout” of the (θ-stochastic) trajectory ξ on the state space. Naturally, we can
feed this readout as an input to the system only if it is itself an admissible θ-input.
Property (3) then states that the original trajectory ξ could be recovered by letting
the system evolve starting at ξ0 and subject to the θ-input ηξ.
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4. The small-gain theorem. Let ξ : T�0 ×Ω → X be a precompact, tempered
closed-loop trajectory of an RDSIO (θ, ϕ,U , h) such that its underlying RDSI (θ, ϕ,U)
satisfies the hypotheses of Corollary 3.14. Let ηξ : T�0 ×Ω → U be the corresponding
(tempered) output trajectory along ξ; that is,

ηξt (ω) = h(θtω, ξt(ω)) ∀(t, ω) ∈ T�0 × Ω .

If η̌ξ →θ u∞ for some u∞ ∈ U , then it follows from Corollary 3.14 that ξ →θ K(u∞).
When will it be true that η̌ξ →θ u∞ for some u∞ ∈ U? Are there reasonable conditions
under which η̌ξ →θ u∞ for the same u∞, for any (precompact, tempered) closed-loop
trajectories, thus yielding convergence of any closed-loop trajectory of the system to
K(u∞)?

4.1. Result. In order to address the questions above, we first look at ηξ for
monotone or antimonotone output functions. It turns out that monotonicity alone
already imposes severe constraints on the behavior of ηξ.

Lemma 4.1. Suppose that (θ, ϕ,U , h) is a monotone RDSIO possessing a contin-
uous I/S characteristic K : UΩ

θ → XΩ
θ and a monotone or antimonotone temperedness

preserving output function h. Given a precompact, tempered closed-loop trajectory
ξ ∈ KX

θ ∩ VX
θ of (θ, ϕ,U , h), let ηξ ∈ U be the corresponding (precompact, tempered )

output trajectory along ξ; that is,

ηξt (ω) = h(θtω, ξt(ω)) ∀(t, ω) ∈ T�0 × Ω .

Let (aτ )τ�0 and (bτ )τ�0 be, respectively, the lower and upper tails of the pullback
trajectories of ηξ, and let KY : UΩ

θ → UΩ
θ be the I/O characteristic of (θ, ϕ,U , h).

Then

(KY )2k(aτ ) � θ-lim ηξ � θ-lim ηξ � (KY )2k(bτ ) ∀k ∈ N , ∀τ � 0 .

This observation, which we shall prove further down, motivates the small-gain
condition. Suppose that there exists an u∞ ∈ UΩ

θ such that

lim
k→∞

[(KY )2k(aτ )](ω) = u∞(ω) = lim
k→∞

[(KY )2k(bτ )](ω) ∀̃ω ∈ Ω .

Then it follows from Lemma 4.1 (together with Lemma 2.8 and Corollary 2.14) that
η̌ →θ u∞, thus leaving us in the setting of Corollary 3.14.

Definition 4.2 (small-gain condition). We say that an RDSIO (θ, ϕ,U , h) sat-
isfying the hypotheses of Lemma 4.1 satisfies the small-gain condition if there exists
a (necessarily unique) u∞ ∈ UΩ

θ such that

[(KY )k(u)](ω) −→ u∞(ω)

as k → ∞ for θ-almost all ω ∈ Ω, for each u ∈ UΩ
θ .

Remark 4.3. Note that we do not ask that convergence in the small-gain condition
be tempered.

A small-gain theorem for RDS now follows almost effortlessly.
Theorem 4.4 (small-gain theorem). Suppose that (θ, ϕ,U , h) is a tempered,

monotone RDSIO possessing a continuous I/S characteristic K : UΩ
θ → XΩ

θ and a
monotone or antimonotone temperedness preserving output function h. Suppose, in
addition, that (θ, ϕ,U , h) satisfies the small-gain condition, and let u∞ ∈ UΩ

θ be as in
Definition 4.2. Then

ξ̌ −→θ K(u∞)
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for every precompact, tempered closed-loop trajectory ξ ∈ KX
θ ∩ VX

θ of (θ, ϕ,U , h); in
other words, every precompact, tempered closed-loop trajectory of (θ, ϕ,U , h) converges
(in the pullback, tempered sense ) to K(u∞).

Proof. Consider the notation introduced in the statement of Lemma 4.1. From
the lemma,

(KY )2k(aτ ) � θ-lim ηξ � θ-lim ηξ � (KY )2k(bτ ) ∀k ∈ N , ∀τ � 0 .

By the small-gain condition,

lim
k→∞

[(KY )2k(aτ )](ω) = u∞(ω) = lim
k→∞

[(KY )2k(bτ )](ω) ∀̃ω ∈ Ω .

We obtain θ-lim ηξ = u∞ = θ-lim ηξ, thus yielding η̌ξ −→θ u∞ via Lemma 2.8 and
Proposition 2.11. It then follows from Corollary 3.14 that

ξ̌ = ξ̌ξ0,η
ξ

−→θ K(u∞) ,

completing the proof.

4.2. Examples. We now consider a few examples illustrating how Theorem 4.4
may be applied to establish the existence of unique, globally attracting equilibria for
some classes of nonmonotone, nonlinear RDS generated by RDE. One may allude to
the example in the introduction, namely, a biochemical circuit as illustrated in Figure
1, as a prototype for the more general examples discussed in what follows. As outlined
in the introduction, this biochemical circuit may be modeled by an RDE,

ξ̇i = ai(θtω)ξi +
bi(θtω)

βi(θtω) + gi(ξi−1)
, i = 1, 2, 3

(with the convention ξ0 = ξ3), for some nondecreasing functions gi : R�0 → R�0. This

can be written in matrix notation as ξ̇ = A(θtω)ξ +B(θtω)h(θtω, ξ), where

A(ω) ≡ diag(a1(ω), a2(ω), a3(ω)) , B(ω) ≡ diag(b1(ω), b2(ω), b3(ω))

and

(4.1) h(ω, ξ) ≡
[

1

β1(ω) + g1(ξ3)

1

β2(ω) + g2(ξ1)

1

β3(ω) + g3(ξ2)

]T
.

So, consider the RDS (θ, ϕ) generated by an RDE

ξ̇ = A(θtω)ξ +B(θtω)h(θtω, ξ) , t � 0 , ω ∈ Ω ,

where A and B are as in Example 3.15, and h : Ω× R
n → R

k is an output function.
As discussed in the example, the RDSI (θ, ϕ,U) generated by the RDEI

(4.2) ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t � 0 , ω ∈ Ω , u ∈ SU
∞ ,

is tempered, monotone, and has a continuous I/S characteristic. Thus the burden of
satisfying the hypotheses of Theorem 4.4 has now fallen all on h—the RDS generated
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by (4.2) will have a unique, globally attracting equilibrium whenever h is a mono-
tone or antimonotone temperedness preserving output function such that the RDSIO
(θ, ϕ,U , h) satisfies the small-gain condition.

Example 4.5 (saturated readouts). Consider an output function h : Ω × R
n
�0 →

R
k
�0 defined by

h(ω, x) :=

(
αj(ω)

βj(ω) + gj(x)

)k

j=1

, (ω, x) ∈ Ω× R
n
�0 ,

where α, β : Ω → R
k
�0 and g : Rn

�0 → R
k
�0 satisfy the following hypotheses:

(P1) α and β are continuous and uniformly bounded away from zero and infinity
along θ-almost every orbit; more precisely, for θ-almost every ω ∈ Ω, t 
→ α(θtω) ∈ R

k,
t ∈ R, and t 
→ β(θtω) ∈ R

k, t ∈ R are continuous, and there exist an ε = (ε1, . . . , εk =
ε(ω) � 0 and an M = (M1, . . . ,Mk) = M(ω) � 0 such that ε � α(θtω), β(θtω) � M
for all t ∈ R;

(P2) g is continuous, order-preserving, sublinear (see section 5), and bounded.
Observe that (4.1) is a special case, when all components of α are equal to 1.
It follows straight from the monotonicity of g in (P2) that h is antimonotone.

From (P1),

0 � h(θsω, x(θsω)) �
M(ω)

ε(ω)
∀s ∈ R , ∀ω ∈ Ω ,

for any x ∈ XΩ
θ , where the quotient is defined coordinatewise. In particular, h pre-

serves temperedness. It remains to check that the I/O characteristicKY of (θ, ϕ,SU
∞, h)

satisfies the small-gain condition.
For each u ∈ UΩ

θ ,

[KY (u)](ω) =

(
αj(ω)

βj(ω) + gj
(
[K(u)](ω)

))k

j=1

∀̃ω ∈ Ω .

Fix arbitrarily such an u, and fix arbitrarily any ω ∈ Ω for which

[K(u)](ω) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ

is well-defined and (P1) holds. For each t ∈ R, we have

[KY (u)](θtω) =

⎛⎝ αj(θtω)

βj(θtω) + gj

(∫ t

−∞ Ξ(σ, t, ω)B(θσω)u(θσω) dσ
)
⎞⎠k

j=1

by a simple, linear change of variables. Set

Aω := A(θ·ω) , Bω := B(θ·ω) , αω := α(θ·ω) , and βω := β(θ·ω) ,

and consider the operator Hω : L
θ
+(R

k) → Lθ
+(R

k) defined by

[Hω(ν)](t) :=

⎛⎝ (αω)j(t)

(βω)j(t) + gj

(∫ t

−∞ Ξω(σ, t)Bω(σ)ν(σ) dσ
)
⎞⎠k

j=1

, t ∈ R ,
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for each ν ∈ Lθ
+(R

k), where Lθ
+(R

k) is the family of paths μ : R → R
k
�0 such that

∀γ > 0 , sup
s∈R

|μ(s)| e−γ|s| < ∞ ,

and Ξω : R × R → Mn×n(R) is the fundamental solution of the linear system of
ODE ξ̇ = Aω(t)ξ, t ∈ R. By equipping Lθ

+(R
k) with the partial order naturally

induced by the positive orthant cone-induced partial order in R
k, we may introduce

the “Thompson metric,” with respect to which Hω can be shown (see section 5) to
have a unique, globally attracting fixed point uω ∈ intL∞

+ (Rk) ⊆ Lθ
+(R

k). In fact, the
representative uω can be chosen to be continuous, and in this case we have pointwise
convergence:

lim
m→∞

[Hm
ω (ν)](t) = uω(t) ∀t ∈ R , ∀ν ∈ Lθ

+(R
k) .

(See Proposition 5.9.)
We now show that the map u∞ : Ω → U defined by u∞(ω) := uω(0), ω ∈ Ω,

belongs to UΩ
θ and is the unique, globally attracting fixed point of KY . Fix arbitrarily

u ∈ UΩ
θ . Then

lim
m→∞

[(KY )m(u)](ω) = lim
m→∞

[Hm
ω (u(θ·ω))](0) = uω(0) = u∞(ω) ∀̃ω ∈ Ω .

In particular, u∞ is the θ-almost sure, pointwise limit of measurable maps

ω 
−→ [(KY )m(u)](ω) , ω ∈ Ω , m = 1, 2, 3, . . . ,

hence itself is measurable. Fix arbitrarily any ω ∈ Ω for which the limit above holds.
By the uniqueness of the continuous representatives uω, we have

u∞(θtω) = uθtω(0) = uω(t) ∀t ∈ R .

Therefore t 
→ u∞(θtω), t ∈ R, is bounded. In particular,

sup
t∈R

|u∞(θtω)| e−γ|t| < ∞ ∀γ > 0 .

We conclude that u∞ is tempered and a fixed point of KY . Since u ∈ UΩ
θ was chosen

arbitrarily, this also shows that u∞ is globally attractive.
Example 4.6 (unbounded g). Now consider an output function h : Ω × R

n → R
k

defined by

h(ω, x) :=

(
αj(ω) + α̃j(ω)gj(x)

βj(ω) + β̃j(ω)gj(x)

)k

j=1

, (ω, x) ∈ Ω× R
n ,

where α, α̃, β, β̃ : Ω → R
k
>0, and g : Rn

�0 → R
k
�0 satisfy the following:

(P1′) α, α̃, β, and β̃ are continuous and uniformly bounded away from zero

along the orbit of ω, and satisfy αj(θtω)/βj(θtω) � α̃j(θtω)/β̃j(θtω) for all t ∈ R,
j = 1, . . . , k, for θ-almost every ω ∈ Ω, and

(P2′) g is continuous, order-preserving, and sublinear.
Then h is antimonotone and temperedness preserving, and the I/O characteristic

KY of (θ, ϕ,SU
∞, h) satisfies the small-gain condition. This follows along the same

lines of Example 4.5 by invoking Proposition 5.10.
Example 4.7 (periodic θ). In Example 4.5, suppose that the underlying MPDS θ

is T -periodic; that is, there exists T > 0 such that θt+Tω = θtω for all t ∈ R ∀̃ω ∈ Ω.



2684 MICHAEL MARCONDES DE FREITAS AND EDUARDO D. SONTAG

Then g need not be bounded in order for the small-gain condition to be satisfied. This
also follows along the lines of Example 4.5.

Naturally each of the continuous-time examples above has a discrete-time coun-
terpart. We omit the details, which can be found in [21].

4.3. Proof of Lemma 4.1. The remainder of this section is concerned with the
proof of Lemma 4.1.

Lemma 4.8. Assume the same hypotheses as in Lemma 4.1.
(1) If h is monotone, then h∗(θ-lim ξ) � θ-lim ηξ � θ-lim ηξ � h∗(θ-lim ξ).
(2) If h is antimonotone, then h∗(θ-lim ξ) � θ-lim ηξ � θ-lim ηξ � h∗(θ-lim ξ).
Proof. Since θ-lim ηξ � θ-lim ηξ holds automatically (see the observation following

Definition 2.7), we need only prove the four outer inequalities. The argument for each
of them goes along the same lines, so we shall provide the details for only one of the
inequalities. Namely, we assume that h is antimonotone and prove that

h∗(θ-lim ξ) � θ-lim ηξ .

Let (βτ )τ�0 be the upper tail of the pullback trajectories of ξ. Since

ξt(θ−tω) � βτ (ω) ∀̃ω ∈ Ω , ∀t � τ � 0 ,

it follows from the antimonotonicity of h that

h(ω, ξt(θ−tω)) � h(ω, βτ (ω)) ∀̃ω ∈ Ω , ∀t � τ � 0 .

Let (aτ )τ�0 be the lower tail of the pullback trajectories of ηξ. For every τ � 0, we
have

aτ (ω) = inf
t�τ

ηξt (θ−tω) = inf
t�τ

h(ω, ξt(θ−tω)) � h(ω, βτ (ω)) = [h∗(βτ )](ω) ∀̃ω ∈ Ω .

Since h∗ is tempered continuous, by letting τ → ∞ in the chain of equalities and
inequalities above, we obtain

θ-lim ηξ = lim
τ→∞

aτ � lim
τ→∞

h∗(βτ ) = h∗(θ-lim ξ) .

As noted above, the proofs of the other inequalities are entirely analogous.
Proof of Lemma 4.1. Since (θ, ϕ,U) is monotone and

aτ � θ-lim ηξ � θ-lim ηξ � bτ ∀τ � 0 ,

the I/S characteristic K is also monotone, and so

K(aτ ) � K(θ-lim ηξ) � K(θ-lim ηξ) � K(bτ ) ∀τ � 0 .

By Theorem 3.13,

(4.3) K(θ-lim ηξ) � θ-lim ξ � θ-lim ξ � K(θ-lim ηξ) .

Combining these with the previous inequalities, we obtain

(4.4) K(aτ ) � θ-lim ξ � θ-lim ξ � K(bτ ) ∀τ � 0 .
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Suppose first that h is monotone. Then the induced output characteristic h∗
preserves the inequalities in (4.4):

KY (aτ ) � h∗(θ-lim ξ) � h∗(θ-lim ξ) � KY (bτ ) ∀τ � 0 .

By Lemma 4.8(1) below, we now have

KY (aτ ) � θ-lim ηξ � θ-lim ηξ � KY (bτ ) ∀τ � 0 .

Now suppose that we have shown that

(4.5) (KY )k(aτ ) � θ-lim ηξ � θ-lim ηξ � (KY )k(bτ ) ∀τ � 0

for some k ∈ N. Then, again, combining the monotonicity of K and h∗, (4.3), and
Lemma 4.8(1), we obtain

K
(
(KY )k(aτ )

)
� K(θ-lim ηξ) � θ-lim ξ � θ-lim ξ � K(θ-lim ηξ) � K

(
(KY )k(bτ )

)
,

hence

(KY )k+1(aτ ) � h∗(θ-lim ξ) � θ-lim ηξ � θ-lim ηξ � h∗(θ-lim ξ) � (KY )k+1(bτ )

for every τ � 0. It follows by induction that (4.5) holds for every k ∈ N. In particular,
the conclusion of the lemma holds.

If h is antimonotone, then h∗ is order-reversing. Thus applying h∗ to each term
in the chain of inequalities in (4.4) yields

KY (bτ ) � h∗(θ-lim ξ) � h∗(θ-lim ξ) � KY (aτ ) ∀τ � 0 .

Applying Lemma 4.8(2), we get

(4.6) KY (bτ ) � θ-lim ηξ � θ-lim ηξ � KY (aτ ) ∀τ � 0 .

Applying K to each term in (4.6) and using (4.3) once again, we get

K
(
KY (bτ )

)
� θ-lim ξ � θ-lim ξ � K

(
KY (aτ )

)
∀τ � 0 .

Applying h∗ to each term in the inequalities above and using Lemma 4.8(2) once
again to simplify, we then get

(KY )2(aτ ) � θ-lim ηξ � θ-lim ηξ � (KY )2(bτ ) ∀τ � 0 .

The argument can now be completed by induction on k just as in the previous case,
using the monotonicity of K, the antimonotonicity of h∗, (4.3), and Lemma 4.8(2) to
simplify the two terms in the middle after each application of K and h∗, respectively.

5. Discrete iterations and the Thompson metric. We develop here tools
that allow us to verify the small-gain condition in the examples treated in this paper.
Due to space limitations, we do not cover the periodic case; for details on the latter,
as well as proofs of properties of the Thompson metric used here, we refer the reader
to Appendix D in [21].

In this section, and unless otherwise stated, by an (algebraic) cone we mean
a nonempty subset V+ ⊆ V of a real vector space that satisfies V+ + V+ ⊆ V+,
αV+ ⊆ V+ for every α > 0, and V+ ∩ (−V+) ⊆ {0}. Elements of V+ are said to be
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nonnegative. Note that we do not impose any topology on V nor ask that V+ be
closed. Nevertheless, such a cone induces a partial order in the underlying vector
space just like before by defining x � y if and only if y−x ∈ V+. This partial order is
compatible with the linear structure of the vector space, in the sense that x � y and
x′ � y′ imply x+ x′ � y + y′, and tx � ty for every t > 0, and x � y for every t < 0.

The equivalence classes under the equivalence relation,

∀x, y ∈ V+ , x ∼ y ⇔ ∃c > 0 : c−1x � y � cx,

are called the parts of V+. In particular, C0 := {0} is a part whenever 0 ∈ V+; we
refer to all other parts as the nonzero parts of V+. For example, the only nonzero part
of the cone R�0 ⊆ R is R>0, the nonzero parts of R2

�0 ⊆ R
2 are {0}×R>0, R>0×{0},

and R>0 × R>0, and, in general, Rn
�0 ⊆ R

n has 2n − 1 nonzero parts, namely, Rn
>0

and the projections of Rn
>0 over each of the lower-dimensional coordinate subspaces.

It is not hard to prove that if V+ is a solid, closed cone in a normed space V ,
then intV+ is a part. If x, y, z are in the interior of V+, then so are x+ z and y + z.
In particular, x, y, x+ z, y + z are all in the same part of V+.

For each nonzero part C of a cone V+, the map dC : C × C → R�0, defined by

dC(x, y) := inf{log c ; c−1x � y � cx} , x, y ∈ C ,

is called the Thompson metric on C. Unless there is any risk of ambiguity, we will
omit the index “C” designating the part, writing simply “d” for the Thompson metric
on any part. We set d(0, 0) = 0 by convention. Actually, in general, dC is only a
pseudometric. Sufficient conditions for dC to be a metric are that V be a normed
space in which the underlying cone V+ is closed. This will be enough for our purposes
in this paper. The reader interested in necessary and sufficient algebraic conditions
for the Thompson metric to be an actual metric may consult [7] for a characterization
in terms of the “almost Archimedean” property.

Thompson introduced dC in [32], where he showed that, under the assumption
that the underlying cone is normal, the metric is complete, and proved a fixed point
result for a class of nonlinear operators which are contractive with respect to the
metric. The Thompson metric is related to the Hilbert projective metric, a thorough
account of which is given in [25, 26]. We summarize next a few needed properties.
In all statements, V and W are real vector spaces partially ordered by cones V+ ⊆ V
and W+ ⊆ W , respectively.

A sublinear map g : V+ → W+ is one for which λg(x) � g(λx) for all λ ∈ [0, 1]
and x ∈ V+. In particular, any linear g∗ : V → W such that g∗(V+) ⊆ W+ is order-
preserving and its restriction to V+ is sublinear. Moreover, a composition h◦g : U+ →
W+ of two sublinear maps g : U+ → V+ and h : V+ → W+ is sublinear, provided that
h is also order-preserving.

Lemma 5.1. If g : V+ → W+ is order-preserving and sublinear, then g is nonex-
pansive with respect to the Thompson metric in the following sense: whenever x and
y are in the same part of V+, g(x) and g(y) are also in the same part of W+, and
d(g(x), g(y)) � d(x, y).

Lemma 5.2. Given β ∈ V+, let τβ : V+ → V+ : x 
→ β + x be the translation of
V+ by β. Then τβ is nonexpansive with respect to the Thompson metric.

Proposition 5.3. Suppose that V is a Banach space, partially ordered by a
solid, closed cone V+ ⊆ V . For any β ∈ intV+, the translation τβ : intV+ → intV+ is
nonexpansive with respect to the Thompson metric on intV+; that is, d(τβ(x), τβ(y)) =
d(x + β, y + β) � d(x, y) for all x, y ∈ intV+. Furthermore, for any B ∈ intV+, the
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restriction of τβ to [0, B] ∩ intV+ is a strict contraction; that is, there exists an
L = L(β,B) ∈ [0, 1) such that d(x+β, y+β) � Ld(x, y) for all x, y ∈ intV+ ∩ [0, B].

Proposition 5.4. Let V be a real Banach space which is partially ordered by a
cone V+ ⊆ V . Then each of the parts of V+ is complete with respect to the Thompson
metric if and only if V+ is normal.

Lemmas 5.1 and 5.2 are not very difficult to prove. Proposition 5.3 follows from
[20, Theorem 2.6, p. 85]. An elementary proof for Proposition 5.4 can be pieced
together using well-known results from the theory of positive operators, as outlined
in [21, p. 179].

We will deal, in particular, with cones of nonnegative functions, defined as follows
for an arbitrary nonempty set T . Consider the space (Rk)T of Rk-valued functions
on T . The positive orthant cone R

k
�0 ⊆ R

k induces the cone (Rk)T+ := (Rk
�0)

T of

nonnegative functions in (Rk)T .
Given any α = (α1, . . . , αk) and u = (u1, . . . , uk) in (Rk)T , the Hadamard product

α � u of α and u, defined by (α � u)j(t) := αj(t)uj(t) for t ∈ T and j = 1, . . . , k,
is bilinear and, in particular, u 
−→ α � u is linear. If α � 0, then this map is also
order-preserving. For any α ∈ (Rk

>0)
T , the coordinatewise inverse α−1 : T → R

k is
defined as α−1(t) := (1/α1(t), . . . , 1/αk(t)) for t ∈ T . For any u, v, and α in (Rk

�0)
T

such that u and v are in the same part, α � u and α � v are also in the same part,
and d(α � u, α � v) � d(u, v); moreover, u−1 and v−1 are in the same part and
d(u−1, v−1) = d(u, v).

For the sake of convenience, we will refer to a measurable map B : R → Mn×k(R)
as a tempered path if Kδ := sups∈R

‖B(s)‖ e−δ|s| < ∞ for each δ > 0. In particular,
B is locally essentially bounded. Note that the natural analogues of all properties of
tempered random variables are still true for tempered paths. In particular, the family
Lθ(Mn×k(R)) of tempered paths R → Mn×k(R) is a vector space over the real scalars.
Of course all the above also can be said about vector-valued paths R → R

n upon
identifying R

n with Mn×1(R). We equip Mn×k(R) with the partial order induced by
the nonnegative orthant cone, that is, the cone of n× k real matrices having all their
entries nonnegative. We then equip Lθ(Mn×k(R)) with the partial order induced by
the cone Lθ

+(Mn×k(R)) of (Lebesgue-almost surely) nonnegative paths in Mn×k(R).
A natural analogue of property (L2) for linear RDSI, for a locally integrable matrix
path A : R → Mn×n(R), is as follows:

(L2′) there exist a λ > 0 and a tempered path γ : R → R such that the fundamen-
tal matrix solution Ξ: R×R → Mn×n(R) of the linear differential equation ξ̇ = A(t)ξ,
t ∈ R satisfies ‖Ξ(s, s+ r)‖ � γ(s) e−λr for all s ∈ R and all r � 0.

The proof of the following lemma uses Proposition 3.12 (Kamke condition), the
sublinearity on V+ of an order-preserving linear map, and Lemma 5.1.

Lemma 5.5. Let A : R → Mn×n(R) and B : R → Mn×k(R) be locally integrable
matrix paths so that B is tempered and (L2′) holds, B is nonnegative (i.e., Bij(t) � 0
for Lebesgue-almost every t ∈ R, for i = 1, . . . , n, j = 1, . . . , k), and all off-diagonal
entries of A are nonnegative; that is, Aij(t) � 0 for Lebesgue-almost every t ∈ R, for
all i, j = 1, . . . , n such that i �= j. Then

(5.1) [J ∗(u)](t) :=

∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ , t ∈ R , u ∈ Lθ(Rk) ,

defines an order-preserving, linear operator J ∗ : Lθ(Rk) → Lθ(Rn). In particular,

J := J ∗∣∣
Lθ

+(Rk)
: Lθ

+(R
k) → Lθ

+(R
n)

is sublinear and thus nonnexpansive with respect to the Thompson metric.
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Conditions for strict contractiveness. We now consider the Banach space
L∞(Rn) of Borel-measurable, essentially bounded, vector-valued functions R → R

n,
with the usual essential supremum norm, equipped with the partial order induced
by the solid, normal cone L∞

+ (Rn) of nonnegative (Borel-measurable and essentially
bounded) functions R → R

n
�0. The interior intL∞

+ (Rn) of L∞
+ (Rn) is the family of

functions uniformly (essentially) bounded away from zero; that is, u belongs to intL∞
+

if and only if there exists an ε = (ε1, . . . , εn) � 0 such that {t ∈ R ; u(t) < ε} has
Lebesgue measure zero. For any u = (u1, . . . , un) ∈ intL∞

+ , u−1 = (u−1
1 , . . . , u−1

n ) is
well-defined and also belongs to intL∞

+ . Any path u ∈ L∞(Rn) has a representative
which is bounded everywhere. Assume without loss of generality that u is one such
representative. Then indeed u ∈ Lθ(Rn). Having this identification in mind, we may
thus write L∞(Rn) ⊆ Lθ(Rn). The proofs of the following two results combine the
previously stated properties of the Thompson metric, Lemma 5.5, Proposition 5.3 and
Lemma 5.1. See [21] for details.

Lemma 5.6. Suppose that A : R → Mn×n(R) and B : R → Mn×k(R) are as in
Lemma 5.5, and let H : L∞

+ (Rk) −→ L∞
+ (Rk) be defined by

[H(u)](t) :=

(
αj(t)

βj(t) + gj(
∫ t

−∞ Ξ(σ, t)B(σ)u(σ) dσ)

)k

j=1

, t ∈ R ,

for each u ∈ L∞
+ (Rk), where (i) α = (α1, . . . , αk) and β = (β1, . . . , βk) are in

intL∞
+ (Rk) ∩ C0(Rk), and (ii) g = (g1, . . . , gk) : R

n
�0 → R

k
�0 is continuous, bounded,

order-preserving, and sublinear. Then H(L∞
+ (Rk)) ⊆ intL∞

+ (Rk). Furthermore, the
restriction I : intL∞

+ (Rk) −→ intL∞
+ (Rk) of H to intL∞

+ (Rk) is a strict contraction
with respect to the Thompson metric on intL∞

+ (Rk); that is, there exists an L ∈ [0, 1)
such that d(I(u), I(v)) � Ld(u, v) for all u, v ∈ intL∞

+ (Rk).

Proof. Let Mj > 0 be such that gj(x) � Mj for every x ∈ R
k
�0, for j = 1, . . . , k.

Define M ∈ intL∞
+ (Rk) by M(t) := (M1, . . . ,Mk), t ∈ R. By Proposition 5.3, there

exists an L := L(β/2, β/2 +M) ∈ [0, 1) such that

(5.2) d(β/2 + x, β/2 + y) � Ld(x, y) ∀x, y ∈ [β/2, β/2 +M ] ∩ intL∞
+ (Rk) .

Fix u ∈ L∞
+ (Rk) arbitrarily. It follows from (i) and (ii) that H(u) is nonnegative

and bounded coordinatewise. Furthermore, αj(t) � εj and βj(t) � Bj , for every
t ∈ R, for some εj > 0 and Bj < ∞, for j ∈ {1, . . . , k}. Hence(

[H(u)](t)
)
j
� εj

Bj +Mj
> 0 ∀t ∈ R , ∀j ∈ {1, . . . , k} .

This shows that H(L∞
+ (Rk)) ⊆ intL∞

+ (Rk).

To establish the strict contractiveness part of the result, consider the operator
G : L∞

+ (Rn) → L∞
+ (Rk), defined by

[G(ξ)](t) := g(ξ(t)) = (g1(ξ(t)), . . . , gk(ξ(t))) , t ∈ R , ξ ∈ L∞
+ (Rn) .

Note that G is also sublinear and order-preserving. Combining this with the various
pieces of notation introduced above, we may rewrite

H(u) = α�
(
β + G

(
J (u)

))−1 ∀u ∈ intL∞
+ (Rk) .
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Fix arbitrarily u, v ∈ intL∞
+ (Rk). We have

d(I(u), I(v)) � d
((

β + G
(
J (u)

))−1
,
(
β + G

(
J (v)

))−1
)

= d
(
β + G

(
J (u)

)
, β + G

(
J (v)

))
.

Since G(L∞
+ (Rn)) ⊆ [0,M ], it follows from (5.2) that

d
(
β + G

(
J (u)

)
, β + G

(
J (v)

))
� Ld

(
β/2 + G

(
J (u)

)
, β/2 + G

(
J (v)

))
.

Hence

d(I(u), I(v)) � Ld
(
β/2 + G

(
J (u)

)
, β/2 + G

(
J (v)

))
� d(u, v) ,

completing the proof.
Reasoning along the same lines, one may obtain the following.
Lemma 5.7. Assume the same hypotheses as in Lemma 5.6, except for replacing

(i) and (ii) in that lemma by (i′) α = (α1, . . . , αk), α̃ = (α̃1, . . . , α̃k), β = (β1, . . . , βk)

and β̃ = (β̃1, . . . , β̃k) are in intL∞
+ (Rk)∩C0(Rk), and satisfy αj(t)/βj(t) � α̃j(t)/β̃j(t)

for all t ∈ R, j = 1, . . . , k and (ii′) g = (g1, . . . , gk) : R
n
�0 → R

k
�0 is continuous, order-

preserving and sublinear. Let H : L∞
+ (Rk) → L∞

+ (Rk) be defined by

[H(u)](t) :=

⎛⎝αj(t) + α̃j(t)gj

(∫ t

−∞ Ξ(σ, t)B(σ)u(σ) dσ
)

βj(t) + β̃j(t)gj

(∫ t

−∞ Ξ(σ, t)B(σ)u(σ) dσ
)
⎞⎠k

j=1

, t ∈ R ,

for each u ∈ L∞
+ (Rk). Then the same conclusions as in Lemma 5.6 hold.

We can now combine the previous results in order to provide a result on uniqueness
and global attraction for the discrete iteration in the small-gain theorem.

Lemma 5.8. Under the same hypotheses as in either Lemma 5.6 or Lemma 5.7,
the discrete dynamical system on intL∞

+ (Rk) generated by the difference equation

(5.3) u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞
+ (Rk) with respect to the

Thompson metric on the part intL∞
+ (Rk).

Proof. We already remarked that intL∞
+ (Rk) is a part. Since L∞(Rk) is a Banach

space and L∞
+ (Rk) is a normal cone, the Thompson metric on intL∞

+ (Rk) is complete
by Proposition 5.4. Under the hypotheses of either Lemma 5.6 or Lemma 5.7,

H(intL∞(Rk)) ⊆ H(L∞(Rk)) ⊆ intL∞(Rk) ,

and H is a strict contraction (with respect to the Thompson metric) on intL∞
+ (Rk).

Therefore H has a unique, globally attracting fixed point u∞ ∈ intL∞(Rk) by the
Banach fixed point theorem.

Proposition 5.9. Suppose that A : R → Mn×n(R) and B : R → Mn×k(R) are as
in Lemma 5.5, and let H : Lθ

+(R
k) −→ Lθ

+(R
k) be defined in the same manner as in

Lemma 5.6, assuming (i) and (ii), but now with inputs u ∈ Lθ
+(R

k). Then the discrete
dynamical system on Lθ

+(R
k) generated by the difference equation

u+ = H(u)
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has a unique, globally attracting equilibrium u∞ ∈ intL∞
+ (Rk) ⊆ Lθ

+(R
k) in the sense

of almost-everywhere, pointwise convergence. Furthermore, the representative u∞ can
be chosen to be continuous, in which case convergence is actually everywhere; that is,

[Hk(u)](t) −→ u∞(t) as k → ∞ ∀t ∈ R , ∀u ∈ Lθ
+(R

k) .

Proof. The assumptions imply that H(u) is in fact bounded coordinatewise for
each u ∈ Lθ

+(R
k), and therefore H(Lθ

+(R
k)) ⊆ L∞

+ (Rk) ⊆ Lθ(Rk). By Lemma 5.6,
we also have H(L∞

+ (Rk)) ⊆ intL∞
+ (Rk), so also H2(Lθ

+(R
k)) ⊆ intL∞

+ (Rk). By
Lemma 5.8, H

∣∣
intL∞

+ (Rk)
has a unique, globally attracting fixed point u∞ with respect

to the Thompson metric. Now fix u ∈ Lθ
+(R

k) arbitrarily, and let uk := Hk(u),
k = 0, 1, 2, . . .. Then uk ∈ intL∞

+ (Rk), k = 2, 3, 4, . . .. Moreover, d(uk, u∞) −→ 0
as k → ∞, since u∞ is the unique, globally attracting fixed point of H

∣∣
intL∞

+ (Rk)

with respect to the Thompson metric. Now e−d(uk,u∞) u∞ � uk � ed(uk,u∞) u∞,
k = 2, 3, 4, . . .. Thus by the triangle inequality, and by normality,

‖uk − u∞‖∞ � ‖uk − e−d(uk,u∞) u∞‖∞ + ‖ e−d(uk,u∞) u∞ − u∞‖∞

� 1 · ‖(ed(uk,u∞) − e−d(uk,u∞))u∞‖∞ + ‖(e−d(uk,u∞) −1)u∞‖∞

� (| ed(uk,u∞) − e−d(uk,u∞) |+ | e−d(uk,u∞) −1|)‖u‖∞

→ 0 as k → ∞ .

In particular, (uk)k∈N is a Cauchy sequence. Furthermore, uk is continuous for each
k ∈ N, since α, β, g are continuous by hypothesis and J (u) is continuous for each
u ∈ Lθ

+(R). Thus indeed (uk)k∈N converges uniformly to a continuous function which
is equal to u∞ in the sense of L∞.

A totally analogous proof, but now appealing to Lemma 5.7, gives the following.
Proposition 5.10. Suppose that A : R → Mn×n(R) and B : R → Mn×k(R) are

as in Lemma 5.5, and let H : Lθ
+(R

k) −→ Lθ
+(R

k) be defined in the same manner as
in Lemma 5.7, assuming (i′) and (ii′), but now with inputs u ∈ Lθ

+(R
k). Then the

discrete dynamical system on Lθ
+(R

k) generated by the difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞
+ (Rk) ⊆ Lθ

+(R
k) in the sense

of almost-everywhere, pointwise convergence. Furthermore, the representative u∞ can
be chosen to be continuous, in which case convergence is actually everywhere; that is,

[Hk(u)](t) −→ u∞(t) as k → ∞ ∀t ∈ R , ∀u ∈ Lθ
+(R

k) .

6. Discussion/closing remarks. We have developed the foundations for an
extension of Arnold’s RDS formalism to encompass systems with inputs and out-
puts. The usefulness of our approach was illustrated by the statement and proof of
a small-gain theorem for RDS. We view this theorem as merely a first step in the
development of a theory of RDSIO. Future directions to pursue include the study of
more complicated network interconnections, SDE (with inputs and outputs), as well
as, for example, the development of an extension to RDSIO of notions of input-to-
state stability and the associated methods for nonlinear systems analysis and control
design.

Appendix A. BMNSO spaces. In this appendix we carefully define BMNSO
spaces, presenting some technical properties which were needed throughout this paper.
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Spaces with the exact same structure but without any special name have been called
for in the work of Chueshov on monotone RDS [6]. Our main goal in this appendix
is, therefore, to make the presentation more self-contained by collecting all necessary
definitions and providing primary references for results which are not proved here. It
also presents a few crucial technical results and helpful terminology not found in [6].

A.1. The Hausdorff distance. Recall that the Hausdorff distance between
two nonempty, bounded subsets A and C of a metric space (X, d) is defined to be the
nonnegative real number

dH(A,C) := max

{
sup
a∈A

dist(a, C), sup
c∈C

dist(c, A)

}
,

where dist(x,E) := infy∈E d(x, y) for x ∈ X and ∅ �= E ⊆ X is the distance between
a point and a nonnempty subset of X . Given a point x ∈ X , and ε > 0, denote by
Bε(x) the ball of radius ε and centered at x, that is, Bε(x) := {y ∈ X ; d(y, x) < ε},
and let Aε :=

⋃
a∈A Bε(a), for any nonempty subset A ⊆ X . It is not difficult to show

that dH(A,C) = inf{ε > 0 ; A ⊆ Cε and C ⊆ Aε} for any nonempty, bounded subsets
A,C ⊆ X .

Given a metric space (X, d), we denote the family of nonempty, bounded, closed
subsets of X by F (X). It is well-known that when (X, d) is a compact metric space,
the restriction dH

∣∣
F (X)×F (X)

of the Hausdorff distance to F (X) constitutes a metric

with respect to which F (X) is also compact (see, e.g., [21, Appendix A] for a self-
contained presentation). This property of the Hausdorff distance will be used below to
show that the shell of a compact subset of an BMNSO space is also compact (Theorem
A.6).

A.2. BMNSO spaces. Recall that a subset V+ of a real topological vector
space V is said to be a cone if (C1) V+ is closed (not typically part of the definition
[20], but a standard assumption in the theory of monotone RDS [6, 5], and also
needed in our preliminary results); (C2) V+ + V+ := {x + y ; x, y ∈ V+} ⊆ V+;
(C3) αV+ := {αx ; x ∈ V+} ⊆ V+ for every α � 0; and (C4) V+ ∩ (−V+) = {0}.
Given a subset X of V and a cone V+ ⊆ V , the binary relation �V+ on X defined by
x �V+ y ⇔ y − x ∈ V+ is a closed partial order, that is, {(x, y) ∈ X ×X ; x �V+ y}
is a closed subset of X ×X . This partial order is referred to as the partial order in
X induced by the cone V+. Naturally, we write x <V+ y to indicate that x �V+ y and
x �= y. Furthermore, x �V+ y means that y �V+ x, and x >V+ y means that y <V+ x.

An order-interval of V is a subset of the form {x ∈ V ; aR1xR2b}, {x ∈ V ; aR1x},
or {x ∈ V ; xR2b}, for some R1, R2 ∈ {�V+ , <V+} and a, b ∈ V . We denote, in
particular, [a, b] := {x ∈ V ; a �V+ x �V+ b}, a, b ∈ V .

If the interior intV+ of the cone V+ is nonempty, then V+ is said to be a solid
cone. In this case we write x �V+ y or y �V+ x whenever y − x ∈ intV+.

The index V+ in the inequality symbols above shall be dropped whenever there
is no risk of confusion regarding the underlying cone.

A vector v ∈ V is said to be a supremum of a subset A ⊆ V—and denoted by
supA—if a � v for every a ∈ A (i.e., v is an upper bound), and v � ṽ for any ṽ ∈ V
such that a � ṽ for every a ∈ A (the least upper bound). Note that the supremum, if
it exists, is unique. Lower bounds and infima are defined analogously.

If every order-bounded, finite subset M = {v1, . . . , vk} ⊆ V has a supremum
supM , then the cone V+ is said to be minihedral.
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For ease of reference, we state the property below as a lemma. The proof illus-
trates the kind of situation in which it is convenient to assume that the cone is a
closed subset of its underlying topological vector space.

Lemma A.1. Let B be a subset of a real topological vector space partially ordered
by a cone. Then supB exists if and only if supB exists. In this case, supB = supB.
Analogously, inf B exists if and only if inf B exists, in which case inf B = inf B.

Proof. Suppose supB exists. Given any x ∈ B, let (xα)α∈A be a net in B
converging to x. We have xα � supB for all α ∈ A, hence x � supB by taking
limits on both sides of the inequality. Thus supB is an upper bound for B. Now
suppose v ∈ X is any upper bound for B. Then v is also an upper bound for B, and
so supB � v by the definition of suprema for B. This shows that supB exists and is
equal to supB.

Conversely, if supB exists, then it is clearly an upper bound for B. Furthermore,
any upper bound for B is also an upper bound for B, as we saw above, and thus
greater than or equal to supB. This proves that supB exists and is equal to supB.

The proof for infima is entirely analogous.
Now suppose that V is a normed vector space. Then V+ is said to be normal if

there exists a constant CV+ � 0 such that 0 � x � y implies ‖x‖ � CV+‖y‖.
Lemma A.2. Suppose that (xα)α∈A is a net in a normed space V , partially

ordered by a solid, normal cone V+ ⊆ V . Suppose, in addition, that the net converges
to an element x∞ ∈ V and that the infima and suprema

x−
α := inf{xα′ ; α′ � α} and x+

α := sup{xα′ ; α′ � α}

exist for every α ∈ A. Then the nets (x−
α )α∈A and (x+

α )α∈A so defined also converge
to x∞.

Proof. Since the cone V+ is solid, we may choose an u in the interior of V+ such
that the order-interval [−u, u] contains the unit ball B1(0). Then

Br(x∞) ⊆ [x∞ − ru, x∞ + ru] ∀r > 0 .

So, from the hypothesis of convergence, for each r > 0, there exists an αr ∈ A such
that xα ∈ Br(x∞) ⊆ [x∞ − ru, x∞ + ru] for all α � αr. Now

x−
α = inf{xα′ ; α′ � α} � x∞ − ru ∀α � αr , ∀r > 0 ,

and, similarly,

x+
α = sup{xα′ ; α′ � α} � x∞ + ru ∀α � αr , ∀r > 0 ;

that is,

x∞ − ru � x−
α � x+

α � x∞ + ru ∀α � αr , ∀r > 0 .

Let CV+ � 0 be the normality constant of V+. Then

‖x−
α − x∞‖ � ‖x−

α − (x∞ − ru)‖ + ‖ru‖
� CV+‖(x∞ + ru)− (x∞ − ru)‖ + r‖u‖
= (2CV+ + 1)‖u‖r ∀α � αr , ∀r > 0 .

Since (2CV+ + 1)‖u‖r −→ 0 as r → 0, we conclude that ‖x−
α − x∞‖ −→ 0. The proof

that ‖x+
α − x∞‖ −→ 0 as well is entirely analogous.

Definition A.3 (BMNSO spaces). A real Banach space V which is partially
ordered by a solid, normal, minihedral cone V+ ⊆ V shall be referred to as an BMNSO
space.
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The remainder of this section is devoted to the review and development of a few
key properties of BMNSO spaces. Definition A.5 and Theorem A.6 are key to the
concepts of limit inferior and limit superior developed in subsection 2.2.

Proposition A.4. Suppose that V is an BMNSO space. Then every precompact
subset B ⊆ V has a supremum and an infimum. In particular, supB = supB and
inf B = inf B.

Proof. For compactB ⊆ V , see [17, Theorem 6.5, p. 62]. It follows for precompact
sets in view of Lemma A.1 that if B is precompact, then B is compact and so supB =
supB and inf B = inf B by the lemma.

In view of this proposition, the definition below is well-posed.

Definition A.5 (shells). For any compact subset K of a BMNSO space, the set
shell(K) := {supE ; E is a precompact subset of K} is called the shell of K.

Theorem A.6. The shell of a compact subset of a BMNSO space is compact.

Proof. Let X be an arbitrary compact subset of an arbitrary BMNSO space V .
By Lemma A.1, we have shell(X) = {supE ; E ∈ F (X)}, where F (X) is the family
of compact subsets of X . Now F (X) is a compact metric space with respect to the
Hausdorff distance dH , and shell(X) is the image of F (X) under the map

(A.1) E 
−→ supE , E ∈ F (X) .

Therefore to prove the theorem it is enough to show that this map is continuous.

Let u ∈ intV+ be such that B1(0) ⊆ [−u, u], as in the proof of Lemma A.2.
Denote the normality constant of V+ by K. Fix arbitrarily δ > 0 and A,C ∈ F (X)
such that dH(A,C) < δ. We have A ⊆ Cδ = C + Bδ(0) ⊆ C + [−δu, δu], hence
supA � supC + δu. Similarly, we can show that supC � supA + δu. Combining
these two inequalities, we obtain 0 � supA− supC + δu � 2δu. Now, by normality,

‖ supA− supC‖ � ‖ supA− supC + δu‖+ δ‖u‖ � (2K + 1)‖u‖δ .

This shows that (A.1) is in fact uniformly continuous on F (X), completing the
proof.

Appendix B. List of abbreviations.

BMNSO (space) Banach space partially ordered by a solid, normal,
minihedral cone.

CICS convergent-input-to-convergent-state.
I/O (characteristic) input-to-output characteristic.
I/S (characteristic) input-to-state characteristic.
MPDS measure-preserving dynamical system.
RDE random differential equation.
RDEI random differential equation with inputs.
RdEI random difference equation with inputs.
RDS random dynamical system.
RDSI random dynamical system with inputs.
RDSIO random dynamical system with inputs and outputs.
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