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ABSTRACT

This paper introduces a new formalism for the study of
random control systems. It develops the basic axiomatic
framework and provides several basic definitions and results
on equilibria and convergence. It also presents a convergent-
input convergent-state (CICS ) result, a key concept in the
analysis of stability of feedback interconnections, for mono-
tone systems.

I. INTRODUCTION

In the late 1980s, Ludwig Arnold conceived an elegant
and deep approach to the foundations of random dynamics
[1]. His paradigm of a random dynamical system (RDS for
short) is based on an ultimately simple idea: view an RDS as
consisting of two ingredients: a stochastic but autonomous
“noise process” plus a classical dynamical system that is
driven by this process. The noise process is described by a
measure-preserving dynamical system. It is typically prob-
abilistic, representing for example environmental perturba-
tions, internal variability, randomly fluctuating parameters,
model uncertainty, or measurement errors. The formalism
allows nevertheless for deterministic periodic or almost-
periodic driving processes as well. The resulting theory,
developed since by many authors, provides a seamless in-
tegration of classical ergodic theory with modern dynamical
systems, giving a theoretical framework parallel to classi-
cal smooth and topological dynamics (stability, attractors,
bifurcation theory, and so forth) while allowing one to treat
in a unified way the most important classes of dynamical
systems with randomness, such as random differential or
difference equations (basically, deterministic systems with
randomly changing parameters) or stochastic ordinary and
partial differential equations (white noise or more generally
martingale-driven systems as studied in the Itô calculus).

The main goal of this paper is to propose a new RDS-based
formalism for random control systems, that is, systems with
inputs, which we call random dynamical systems with inputs
(RDSI ). Our motivation arises from the need to provide
foundations for a constructive theory of interconnections and
feedback for stochastic systems, one that will eventually
generalize successful and widely applied deterministic ap-
proaches such as backstepping [2]. Of course, much excellent
work has been done along these lines, not employing an
RDS axiomatic approach, such as the studies [3], [4] on
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stochastic stabilization as well as [5], [6], [7] on feedback
stabilization using noise to state stability analogs of input
to state stability (ISS ) [8], [2], [9], [10], Ideally, however,
stochastic extensions of deterministic theory should take full
advantage of the power of ergodic theory. For example,
suppose that one wishes to study even something as simple as
a scalar affine system ẋ = ax+bu, where a is not a constant
but is randomly varying, a = a(ω). If a(ω) ≤ −λ < 0 for all
ω, then stability will not be an issue. However, if all we have
is that the expected value of a is negative, but a(ω) can take
nonnegative values, then ergodic theory is needed in order
to establish results on almost-sure stability (or convergence
to equilibrium probability distributions). Thus we feel that
an RDS-based theory is most natural in this context.

We first review classical RDS theory. This material is
not new; however, with an eye to generalizations, we re-
formulate it in a slightly different language. We next define
our new concept of RDSI, which extends the notion of
RDS to systems in which there is an external input or
forcing function which is itself a stochastic process. A
major contribution of this work is the precise formulation
of this concept, particularly the way in which the inputs
are shifted in the semigroup (cocycle) property. Note that
stochasticity of inputs is essential if one is to develop a theory
of interconnected subsystems, as an input to one system in
such an interconnection is typically obtained by combining
the (necessarily random) outputs of other subsystems.

After establishing the basic framework, we turn to the
question of convergent-input convergent-output (CICS) prop-
erties: when is it true that if an input converges to an
equilibrium distribution, then solutions also do? Even for
deterministic systems, CICS fails even for systems which are
globally asymptotically stable with respect to constant inputs.
This motivated, for deterministic systems, the introduction
of the notions of ISS [8] and of monotone systems with
inputs [11], either of which allows one to obtain CICS types
of theorems. Fortunately, recent work by Chueshov [12]
introduced the class of monotone RDS (without inputs), a
theory that provides us with the tools needed to pursue the
generalization of the latter to RDSI. Thus, we introduce also
a class of monotone RDSI, and are able to formulate and
prove a CICS theorem for monotone systems. A follow-up
of this paper will introduce systems with (random) outputs
and establish a small-gain theorem for monotone random
dynamical systems with inputs and outputs, generalizing
[11], which follows from the CICS tools developed here.
Separate work in progress deals with generalizations of ISS
within the same RDSI framework.
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II. RANDOM DYNAMICAL SYSTEMS

We first review the random dynamical systems frame-
work of Arnold [1]. Suppose given a measure-preserving
dynamical system1 (MPDS ) θ = (Ω,F ,P, (θt)t∈T ); that is,
a probability space (Ω,F ,P), a topological group (T ,+),
and a measurable flow (θt)t∈T of measure-preserving maps
Ω→ Ω having properties (T1)–(T3):

(T1) (t, ω) 7→ θtω, (t, ω) ∈ T × Ω, is (B(T ) ⊗ F)-
measurable2;

(T2) θt+s = θt◦θs for every t, s ∈ T (semigroup property);
(T3) P ◦ θt = P for each t ∈ T (measure-preserving3).

A set B ∈ F is said to be θ-invariant if θt(B) = B for
all t ∈ T . The MPDS θ is said to be ergodic if, whenever
B ∈ F is θ-invariant, then we have either P(B) = 0 or
P(B) = 1.

In this paper, T will always refer to either R or Z,
depending on whether one is talking about continuous or
discrete time, respectively. In either case, T>0 denotes the
nonnegative elements of T .

In the context of MPDS’s, it is often the case that a
condition depending on ω ∈ Ω is stated to be satisfied for all
ω ∈ Ω̃, for some θ-invariant Ω̃ ⊆ Ω of full measure4. Most
of the time it will not be necessary to specify said Ω̃ though.
So we shall say ‘for θ-almost all ω ∈ Ω’ or write ‘∀̃ω ∈ Ω’
to mean ‘for all ω ∈ Ω̃, for some θ-invariant set Ω̃ ⊆ Ω of
full measure’.

Let X be a metric space constituting the measurable space
(X,B) when equipped with the σ-algebra B of Borel subsets
of X . A (continuous) random dynamical system (RDS ) on
X is a pair (θ, ϕ) in which θ is an MPDS and ϕ : T>0 ×
Ω × X → X is a (continuous) cocycle over θ; that is, a
(B(T>0)⊗ Ω⊗ B)-measurable map such that

(S1) ϕ(t, ω) := ϕ(t, ω, ·) : X → X is continuous for every
t > 0, ω ∈ Ω;

(S2) ϕ(0, w) = idX for each ω ∈ Ω, and

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

for every s, t > 0, and each ω ∈ Ω (cocycle property).

Notice that RDS’s include deterministic dynamical systems
as the special case in which Ω is a singleton. The cocycle
property generalizes the semigroup property of deterministic
dynamical systems.

We now introduce a few pieces of terminology not found
in Arnold [1] to facilitate the discussion.

1Some authors [12, Definition 1.1.1 on page 10],[1, page 635] refer to
such an object primarily as a metric dynamical system. We find measure-
preserving, which [1] also uses as a synonym, less confusing and more
informative.

2In this paper, whenever S is a topological space, B(S) denotes the Borel
σ-algebra of subsets S.

3Property (T3) is normally [13, Definition 1.1] stated as

P(θ−1
t (B)) = P(B) , ∀B ∈ F , ∀t ∈ T .

But since it follows from (T2) that θt is invertible with θ−1
t = θ−t for

each t ∈ T , the two formulations are equivalent in this context.
4In other words, θtΩ̃ = Ω̃ for all t ∈ T , and P(Ω̃) = 1.

In the context of RDS’s, the analogue to points in the state
space X for a deterministic system are random variables
Ω → X , that is, B-measurable maps Ω → X . We denote
the set of all such maps by XΩ

B . A θ-stochastic process5

on X is a (B ⊗ F)-measurable map q : T>0 × Ω→ X . We
denote qt := q(t, ·) for each t > 0. The set of all θ-stochastic
process on X is denoted by SXθ .

Let (θ, ϕ) be an RDS. Given x ∈ XΩ
B , we define the

(forward) trajectory starting at x to be the θ-stochastic
process ξx : T>0 × Ω→ X defined by

ξxt (ω) := ϕ(t, ω, x(ω)) , (t, ω) ∈ T>0 × Ω . (1)

The pullback trajectory starting at x is in turn defined to be
the θ-stochastic process ξ̌x : T>0 × Ω→ X defined by

ξ̌xt (ω) := ϕ(t, θ−tω, x(θ−tω)) , (t, ω) ∈ T>0 × Ω . (2)

Note that ξ̌xt (ω) ≡ ξxt (θ−tω).
We slightly modify the standard notion of equilibrium for

RDS’s (see, for instance, [12, Definition 1.7.1 on page 38])
to allow for the defining property to hold only θ-almost
everywhere, as opposed to everywhere. So an equilibrium
of an RDS is a random variable x ∈ XΩ

B such that

ξxt (ω) = x(θtω) , ∀t > 0 , ∀̃ω ∈ Ω ;

or, equivalently,

ξ̌xt (ω) = x(ω) , ∀t > 0 , ∀̃ω ∈ Ω .

In view of the notion of pullback convergence with which we
will be working, the latter seems to be a more informative
way to state the definition of equilibrium.

We discuss next an analogue, in the stochastic setting, of
constant paths in the deterministic case. We start by defining
a shift operator in SXθ . For each s > 0, let

ρs : SXθ −→ SXθ
q 7−→ ρs(q)

(3)

be defined by

(ρs(q))t(ω) := qt+s(θ−sω) , (t, ω) ∈ T>0 × Ω . (4)

Definition 1 (θ-Stationary Processes): We say that a θ-
stochastic process q̄ ∈ SXθ is θ-stationary if (ρs(q̄))t(ω) =
q̄t(ω) for all t, s > 0, for θ-almost all ω ∈ Ω. 4

Straightforward computations using the definition above
show that a θ-stochastic process q̄ ∈ SXθ is θ-stationary if,
and only if there exists a random variable q ∈ XΩ

B such that

q̄t(ω) = q(θtω) , ∀t > 0 , ∀̃ω ∈ Ω . (5)

In particular, if q̄ is θ-stationary, then the corresponding
random variable in (5) is given by q := q̄0. Thus it is uniquely
determined θ-almost everywhere by q̄. We shall always use
an overbar to denote the θ-stationary θ-stochastic process q̄
associated with a given random variable q, and vice versa.

5A ‘θ-stochastic process’ is indeed just a ‘stochastic process’ in the
traditional sense. We use the prefix ‘θ-’ to emphasize the underlying
probability space (Ω,F ,P) and time semigroup T>0 specified by the given
MPDS.
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III. RANDOM DYNAMICAL SYSTEMS WITH INPUTS

We now define a new concept. It extends the notion of
RDS to systems in which there is an external input or
forcing function. A contribution of this work is the precise
formulation of this concept, particularly the way in which the
argument of the input is shifted in the semigroup (cocycle)
property.

As in the previous section, given a metric space U , we
equip it with its Borel σ-algebra B(U) and denote by UΩ

B
the set of Borel-measurable maps Ω→ U . Let SUθ be the set
of all θ-stochastic processes T>0×Ω→ U . Given u, v ∈ SUθ
and s > 0, we define the θ-stochastic process u♦sv : T>0 ×
Ω→ U by

(u♦sv)τ (ω) =

{
uτ (ω) , 0 6 τ < s

vτ−s(θsω) , s 6 τ
,

for all τ > 0, ω ∈ Ω.
Definition 2 (θ-Inputs): We say that a subset U ⊆ SUθ is

a set of θ-inputs if it has the following three properties.
(1) Every u ∈ SUθ such that u(·, ω) : T>0 → U is constant

for every ω ∈ Ω belongs to U .
(2) u♦sv ∈ U for any u, v ∈ U and any s ∈ T>0.
(3) If u ∈ SUθ is such that, for every s ∈ T>0, there exists

a v(s) ∈ U such that

u
∣∣
[0,s)×Ω

= v(s)
∣∣
[0,s)×Ω

,

then u ∈ U . 4
In other words, a set of θ-inputs is a subset of SUθ which
1) contains all the θ-stochastic processes which are constant
along each ω ∈ Ω, 2) is closed under concatenation and
3) contains all θ-stochastic processes such that all their
truncations are also in the set.

Definition 3 (RDSI): A random dynamical system with
inputs (RDSI ) is a triple (θ, ϕ,U) consisting of an MPDS
θ = (Ω,F ,P, {θt}t∈T ), a set of θ-inputs U ⊆ SUθ , and a
map

ϕ : T>0 × Ω×X × U → X

satisfying
(I1) ϕ(·, ·, ·, u) : T>0 ×Ω×X → X is (B(T>0)⊗F ⊗B)-

measurable for each fixed u ∈ U ;
(I1′) the map ϕ̃ : T>0 × Ω×X × U → X defined by

ϕ̃(t, ω, x, ũ) := ϕ(t, ω, x, c(ũ)) ,

(t, ω, x, ũ) ∈ T>0×Ω×X×U , where (c(ũ))t(ω) ≡ ũ,
is (B(T>0)⊗F ⊗ B ⊗ B(U))-measurable;

(I2) ϕ(t, ω, ·, u) : X → X is continuous for each fixed
(t, ω, u) ∈ T>0 × Ω× U ;

(I3) ϕ(0, ω, x, u) = x for each (ω, x, u) ∈ Ω×X × U ;
(I4) given s, t > 0, ω ∈ Ω, x ∈ X , u, v ∈ U , if

ϕ(s, ω, x, u) = y

and
ϕ(t, θsω, y, v) = z ,

then
ϕ(s+ t, ω, x, u♦sv) = z ;

(I5) and given t > 0, ω ∈ Ω, x ∈ X , and u, v ∈ U ,
if uτ (ω) = vτ (ω) for almost all τ ∈ [0, t), then
ϕ(t, ω, x, u) = ϕ(t, ω, x, v). 4

(I1)–(I2) are regularity conditions. (I3) means that nothing
has “happened” if one is still at time t = 0. (I4) generalizes
the cocycle property and (I5) states that the evolution of an
RDS subject to an input u is, so to speak, independent of
irrelevant random states. Example 1 below will illustrate this
concept.

Remark 1: Notice that for each s, t > 0, x ∈ X , ω ∈ Ω,

ϕ(t+ s, ω, x, u) = ϕ(t, θsω, ϕ(s, ω, x, u), ρs(u))

for all u ∈ U . This follows by (I4) with v = ρs(u), which
then renders u♦sv = u. 2

Recalling the definitions stated in Equations (3)–(4),

(ρs(u))t(θsω) = ut+s(ω) ;

the righthand side is the input as interpreted by an observer of
the RDSI ϕ who started at time t1 = 0, while the left-hand
side is how someone who started observing the system at
time t2 = s would describe it at time t (+ t2). Following this
interpretation, a θ-stationary input would then be an input
which is observed to be just the same, regardless of when
one started observing it.

IV. θ-STATIONARY INPUTS AND CHARACTERISTICS

The concept of RDSI subsumes that of an RDS, as we
shall explain below. Denote the subset of SUθ consisting of
θ-stationary inputs by S̄Uθ . Let (θ, ϕ,U) be an RDSI, and
suppose that u ∈ U ∩ S̄Uθ is some θ-stationary input. We
consider the map

ϕu : T>0 × Ω×X −→ X
(t, ω, x) 7−→ ϕ(t, ω, x, u)

.

It follows from condition (I1) that ϕu is measurable, from
(I2) that ϕu(t, ω, ·) is continuous for each (t, ω) ∈ T>0 ×
Ω, and from (I3) that ϕu(0, ω, ·) = idX for every ω ∈ Ω.
Using (I4) with Definition 1 and Remark 1 above, we can
show that ϕu has the cocycle property θ-almost everywhere.
Thus, if necessary, we may redefine ϕu on the θ-invariant set
of measure zero where the cocycle property may not hold,
obtaining6 an RDS (θ, ϕu).

Definition 4 (Equilibria): Let (θ, ϕ,U) be an RDSI, and
suppose that µ̄ ∈ U∩S̄Uθ , with generating random variable µ.
An equilibrium associated to µ̄ (or to µ) is any equilibrium
x of the RDS (θ, ϕµ). The set of all equilibria associated to
µ̄ is denoted as E(µ̄) (or E(µ)).

For deterministic systems (when Ω is a singleton), when
the set E(µ̄) consists of a single globally attracting equilib-
rium, the mapping µ̄ 7→ E(µ̄) is the object called the “input to
state characteristic” in the literature on monotone i/o systems.
We extend this notion to RDSI’s. For reasons which will be
illustrated in Example 1 below and become clearer in the
proof of Theorem 1, further conditions on the convergence
of the states need to be assumed.

6In the language of Arnold [1], ϕu is a crude cocycle which can be
perfected into an undistinguishable cocycle, which we also denote ϕu.
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In what follows, given an MPDS θ and a normed space
(X, ‖ · ‖), we denote by XΩ

θ the space of tempered random
variables Ω → X; that is, the space of F-measurable maps
r : Ω→ X such that

sup
s∈T
‖r(θsω)‖e−γ|s| <∞ , ∀γ > 0 , ∀̃ω ∈ Ω .

We observe that XΩ
θ constitutes a module over the ring RΩ

θ

of real-valued, tempered random variables.
Definition 5 (Tempered Convergence): Let (ξα)α∈A be a

net in XΩ
B and ξ∞ any random variable in XΩ

B . We say that
(ξα)α∈A converges to ξ∞ in the tempered sense if there exists
a nonnegative, tempered random variable r : Ω → R>0 and
an α0 ∈ A such that
(1) ξα(ω) → ξ∞(ω) as α → ∞ for θ-almost all ω ∈ Ω,

and
(2) ‖ξα(ω)− ξ∞(ω)‖ 6 r(ω) for all α > α0, for θ-almost

all ω ∈ Ω.
In this case we denote ξα →θ ξ∞ (as α→∞). 4

Definition 6 (Tempered Continuity): A map

K : U ⊆ UΩ
B → XΩ

B

is said do be tempered continuous if, whenever (uα)α∈A is a
net in U convergent to u∞ ∈ U in the tempered sense, then
K(uα)→θ K(u∞) as α→∞ as well. 4

Definition 7 (I/S Characteristic): An RDSI (θ, ϕ,U) is
said to have an input to state (i/s ) characteristic K : UΩ

θ →
XΩ
θ if UΩ

θ ⊆ U and

ξ̌x,ut −→θ K(u) as t→∞ ,

for every x ∈ XΩ
θ , for every u ∈ UΩ

θ . 4
Example 1 (Affine RDEI’s): Let (θ, ϕ,SU∞) be the RDSI

generated by the affine random differential equation with
inputs RDEI

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t > 0 , u ∈ SU∞ , (6)

where X = Rn, U = Rk, A : Ω→ Mn×n(R) and B : Ω→
Mn×k(R) are random matrices such that

t 7−→ A(θtω) , t > 0 , and t 7−→ B(θtω) , t > 0 ,

are locally essentially bounded for every ω ∈ Ω, and SU∞ ⊆
SUθ is the subset of θ-stochastic processes u such that

t 7−→ ut(ω) , t > 0 ,

are locally essentially bounded for every ω ∈ Ω as well.
Then indeed

ϕ(t, ω, x, u) ≡ Φ(t, ω, x) + Ψ(t, ω, u) ,

where
Φ(t, ω, x) ≡ Ξ(0, t, ω) · x

and

Ψ(t, ω, u) ≡
∫ t

0

Ξ(σ, t, ω)B(θσω)uσ(ω) dσ ,

Ξ(·, ·, ω) : R×R→Mn×n(R) being the fundamental matrix
solution of the homogeneous part of (6), namely, the linear

differential equation

ξ̇ = A(θtω)ξ , t > 0 ,

for each ω ∈ Ω (see Chueshov [12, Section 2.1, pages 59–
60]).

Now suppose in addition that A,B are such that

(L1) B is tempered and
(L2) there exist a λ > 0 and a nonnegative, tempered random

variable γ ∈ (R>0)Ω
θ such that

‖Ξ(s, s+ r, ω)‖ 6 γ(θsω) e−λr

for all s ∈ R, all r > 0, for θ-almost all ω ∈ Ω.

Then (θ, ϕ,SU∞) has a continuous input to state characteristic
K : UΩ

θ → XΩ
θ . In fact, it can be shown that

lim
t→∞

Φ(t, θ−tω, x(θ−tω)) = 0

and

lim
t→∞

Ψ(t, θ−tω, ū) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ

(7)
for every x ∈ XΩ

θ , every u ∈ UΩ
θ , and θ-almost all ω ∈ Ω.

Moreover, the convergence in each of these limits is tempered
and the righthand side of (7) defines a tempered Borel-
measurable function of ω ∈ Ω. So

(K(u))(ω) ≡
∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ .

The map K so defined can also be shown to be continuous in
the sense of Definition 6. The proofs follow from estimates
using the temperedness hypotheses (L1) and (L2) together
with the observation that

ω 7−→ ‖b(θ·ω) e−γ|·| ‖Lp(R) , ω ∈ Ω ,

is a tempered random variable for any tempered random
variable b ∈ (R>0)Ω

θ , any γ > 0, and any p ∈ [1,∞]. 3

Remark 2: If ‖A(·)‖ ∈ L1(Ω,F ,P), the largest eigen-
value λ(·) of the Hermitian part of A(·) is such that

Eλ :=

∫
Ω

λ(ω) dP(ω) < 0 ,

and the underlying MPDS θ is ergodic, then it follows from
[12, Theorem 2.1.2, page 60] that (L2) holds with λ :=
−(Eλ+ ε) for any choice of ε ∈ (0,−Eλ). 2

V. MONOTONE RDSI

Suppose that (X,6) is a partially ordered metric space.
For any a, b ∈ XΩ

B , we write a 6 b to mean that a(ω) 6 b(ω)
for θ-almost all ω ∈ Ω. Similarly, for any p, q ∈ SXθ , we
write p 6 q to mean that p(t, ω) 6 q(t, ω) for all t ∈ T>0,
for θ-almost all ω ∈ Ω.

Definition 8: An RDSI (θ, ϕ,U) is said to be monotone
if the underlying state and input spaces are partially ordered
metric spaces (X,6X), (U,6U ), respectively, and

ϕ(·, ·, x, u) 6X ϕ(·, ·, z, v)
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whenever x, z ∈ X and u, v ∈ SUθ are such that x 6X z and
u 6U v. 4
Most often the underlying partial order will be clear from
the context and we shall use simply 6 to denote either of
6X or 6U .

In this work we are particularly interested in “cone-
induced” partial orders. Recall that a cone in a real normed
space V is a closed, convex subset V+ ⊆ V such that
aV+ ⊆ V for all a > 0 and V+ ∩ (−V+) = {0}. The
underlying space V is partially ordered by the relation

x 6V+
y ⇐⇒ y − x ∈ V+ .

Since V+ is closed, this partial order is compatible with the
topology of V ; in other words, the inequality is preserved
by limits. A cone V+ said to be solid if its interior intV+ is
nonempty. We say that V+ is a normal cone if there exists
a constant C > 0 (the normality constant ) such that 0 6V+

x 6V+
y implies ‖x‖ 6 C‖y‖. The cone V+ is said to be

minihedral if the induced partial order in V behaves in a way
such that every finite subset B ⊆ V has an infimum inf B
and a supremum supB; that is, inf B 6 x for all x ∈ B
and, if y 6 x for all x ∈ B, then y 6 x (analogously for
the supremum). Given a, b ∈ V , we define the conic interval
[a, b] ⊆ V to be the set of points x ∈ V such that a 6 x 6 b.

Definition 9 (Eventual Temperedness): We say that a θ-
stochastic process u ∈ SVθ is eventually tempered if there
exist a tempered random variable β ∈ (V+)Ω

θ and a t0 > 0
such that

ǔt(ω) ∈ [−β(ω), β(ω)] , ∀t > t0 ,

for θ-almost ω ∈ Ω. 4
Definition 10 (Tempered RDSI): Let (θ, ϕ,U) be an RDSI

evolving in a normed space X with inputs defined in a
normed space U , both partially ordered by cones X+ and
U+, respectively. We say that ϕ is tempered if the trajectories
ξx,u are eventually tempered for every tempered initial state
x ∈ XΩ

θ and every eventually tempered input u ∈ U . 4
The RDSI in Example 1 is tempered, and also monotone

with respect to the partial orders in Rn and Rk induced by
their respective positive orthant cones.

Remark 3: (1) Suppose that V+ ⊆ V is a solid, normal
cone. If the pullback trajectory of a θ-stochastic process
u ∈ SVθ is tempered-convergent (see Definition 5), then u
is eventually tempered.

(2) Conversely, if V+ is normal, u ∈ SVθ is eventually
tempered and the pullback trajectories ǔ·(ω) converge for
θ-almost all ω ∈ Ω, then said convergence is tempered. 2

VI. CONVERGENT-INPUT CONVERGENT-STATE

Theorem 1 (CICS): Suppose that X,U are separable Ba-
nach spaces, partially ordered by solid, normal, strongly
minihedral cones X+ ⊆ X and U+ ⊆ U , respectively. Let
(θ, ϕ,U) be a tempered, monotone RDSI with state space X
and input space U and suppose that ϕ has a continuous i/s
characteristic K : UΩ

θ → XΩ
θ . If u ∈ U and u∞ ∈ UΩ

θ are
such that

(i) the closure βtu of the tail of the pullback of u is a
compact random set7 for each t > 0 and

(ii) ǔt −→θ u∞ as t→∞,

then

ξ̌x,ut −→θ K(u∞) as t→∞ , ∀x ∈ XΩ
θ . (8)

In other words, if the pullback trajectories of u are precom-
pact and converge to u∞ in the tempered sense, then the
pullback trajectories of ϕ subject to u and starting at any
tempered random state x will converge to K(u∞) in the
tempered sense as well.

Proof: From (ii) and Remark 3, we know that u is
eventually tempered. Now fix arbitrarily x ∈ XΩ

θ . Since ϕ
is tempered, the θ-stochastic process ξx,u is also eventually
tempered. So it follows again from Remark 3 that, in order to
prove the tempered convergence in (8), we need only show
the pointwise convergence; in other words, we need only
show that

ξ̌x,ut (ω) −→
(
K(u∞)

)
(ω) as t→∞ , ∀̃ω ∈ Ω . (9)

It follows from eventual temperedness that there exist a
tempered random variable β : Ω → U+ and a t0 > 0 such
that

ǔt(ω) ∈ [−β(ω), β(ω)] , ∀t > t0 , ∀̃ω ∈ Ω .

By normality, every measurable selection of [−β, β] is tem-
pered.

For each τ > 0, define aτ , bτ : Ω→ U by

aτ (ω) := inf βτu(ω) = inf
t>τ

ut(θ−tω)

and
bτ (ω) := supβτu(ω) = sup

t>τ
ut(θ−tω)

for each ω ∈ Ω. It follows from the compactness assumption
in (i) and [12, Theorem 3.2.1, page 90] that aτ , bτ are well-
defined and measurable. For τ > t0, we have aτ , bτ ∈
[−β, β], so aτ , bτ are indeed tempered random variables.
Moreover, it can be shown using (ii) and normality of U+

that
aτ , bτ −→θ u∞ as τ →∞ . (10)

For each τ > 0, let āτ , b̄τ be the θ-stationary processes
generated by aτ , bτ , respectively. Then

(āτ )s(ω) = aτ (θsω)

= inft>τ ut(θ−tθsω)

6 uτ+s(θ−(τ+s)θsω)

= (ρτ (u))s(ω)

and, similarly,

(ρτ (u))s(ω) 6 (b̄τ )s(ω) , s, τ > 0 , ω ∈ Ω .

7In a separable Banach space U , a multifunction D : Ω → 2U\{∅} is
a compact random set if, and only if D(ω) is compact for each ω ∈ Ω
and {ω ∈ Ω ; D(ω) ∩ F 6= ∅} is F -measurable for every closed subset
F ⊆ U . (See [12, Proposition 1.3.1(iii), page 20].)
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Thus
āτ 6 ρτ (u) 6 b̄τ , τ > 0 . (11)

For any ω ∈ Ω and any t > τ > t0, we have

‖ξ̌x,ut (ω)− (K(u∞))(ω)‖ 6 ‖ξ̌x,ut (ω)− ξ̌x,āτt (ω)‖
+‖ξ̌x,āτt (ω)− (K(aτ ))(ω)‖
+‖(K(aτ ))(ω)− (K(u∞))(ω)‖ .

Given any ε > 0, it follows from (11) plus the continuity of
K that there exists τ0 > t0 such that

‖(K(aτ ))(ω)− (K(u∞))(ω)‖,

‖(K(bτ ))(ω)− (K(u∞))(ω)‖ < ε , τ > τ0 .

Now we can use the convergence in the definition of input
to state characteristic to choose a t1 > 0 such that

‖ξ̌x,āτ0t (ω)− (K(aτ0))(ω)‖ < ε , t > t1 .

Using the cocycle property, we may abbreviate s := t − τ0
and compute

ξ̌x,ut (ω)

= ϕ(s, θ−sω, ϕ(τ0, θ−tω, x(θ−tω), u), ρτ0(u))

= ϕ(s, θ−sω, x1(θ−sω), ρτ0(u))

= ξ̌
x1,ρτ0 (u)
s (ω) ,

where x1 ∈ XΩ
θ is defined by

x1(ω) := ϕ(τ0, θ−τ0ω, x(θ−τ0ω), u) , ω ∈ Ω .

Now by (11) and monotonicity,

ξ̌
x1,āτ0
s (ω) 6 ξ̌

x1,ρτ0 (u)
s (ω) 6 ξ̌

x1,b̄τ0
s (ω) , s > 0 .

Let C > 0 be the normality constant for U+. Then

‖ξ̌x1,ρτ0 (u)
s (ω)− ξ̌x1,āτ0

s (ω)‖

6 C‖ξ̌x1,b̄τ0
s (ω)− ξ̌x1,āτ0

s (ω)‖

6 C‖ξ̌x1,b̄τ0
s (ω)− (K(bτ0))(ω)‖

+C‖(K(bτ0))(ω)− (K(u∞))(ω)‖
+C‖(K(u∞))(ω)− (K(aτ0))(ω)‖

+C‖(K(aτ0))(ω)− ξ̌x1,āτ0
s (ω)‖

6 C‖ξ̌x1,b̄τ0
s (ω)− (K(bτ0))(ω)‖

+C‖(K(aτ0))(ω)− ξ̌x1,āτ0
s (ω)‖+ 2Cε ,

for every s > 0. Again from the definition of input to state
characteristic, one can choose s0 > 0 large enough so that

‖ξ̌x1,b̄τ0
s (ω)− (K(bτ0))(ω)‖ < ε

and
‖(K(aτ0))(ω)− ξ̌x1,āτ0

s (ω)‖ < ε

for all s > s0. It then follows that

‖ξ̌x0,u
t (ω)− (K(u∞))(ω)‖ < (4C + 2)ε ,

for t > max{t1, τ0 + s0}. Since ε > 0 was arbitrary, (9)
holds.
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