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ABSTRACT OF THE DISSERTATION

A class of input/output random systems: monotonicity

and a small-gain theorem

by Michael Marcondes de Freitas

Dissertation Director: Dr. Eduardo D. Sontag

We expand upon the theory of random dynamical systems (RDS) of L. Arnold, de-

veloping a theory of random dynamical systems with inputs and outputs (RDSIO)—an

abstract framework for the treatment of noise-driven systems subject to stochastic in-

puts and yielding random outputs. This development allows for one to study both

autonomous RDS and proper RDSIO as the feedback interconnection of smaller ran-

dom input/output modules. As “proof of concept,” we prove a small-gain theorem for

autonomous RDS which can be realized as the feedback interconnection of monotone

RDSI with monotone or anti-monotone outputs. This result gives sufficient conditions

for autonomous RDS to possess unique, globally attracting equilibria—the RDS in

question need not be itself monotone.
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Chapter 1

Introduction

The study of the long-term behavior of systems evolving over time started long ago.

It has been about three and a half centuries since its formal mathematical treatment

first began, along with the development of Newtonian mechanics, while some of its

philosophical underpinnings—for instance, the idea of causality—go at least as far back

as Aristotle. Ever since, the body of theory often known simply as dynamical systems

has become an increasingly active area of research. It has motivated the development

of a great deal of modern mathematics in areas such as differential geometry, alge-

braic topology, and ergodic theory, in addition to providing for better descriptions and

understanding of natural phenomena.

Over the past several decades, randomness or uncertainty have been gradually, and

systematically, incorporated into the study of the dynamic behavior of systems evolving

by both discrete or continuous time increments—as well as “mixed” time-evolution

regimes with continuous intervals interspersed by discrete “jumps.” This has motivated

the development of several conceptual approaches to describing “random dynamics” in

a unified way for large classes of systems such as, for instance, stochastic analysis

[46, 32], which describes differential equations driven by semimartingales rather than

just Gaussian white noise, random dynamical systems [4, 8], which unifies discrete-

and continuous-time systems driven by stationary noise processes, and, more recently,

stochastic dynamic equations, which describes systems evolving over time-parameter

sets not necessarily equipped with the structure of a semigroup [49, 23]. This is the

tradition within which lies this work.

To motivate the discussion, consider a simple biochemical circuit in which three

species—say, lacI, tetR and cI, as in the repressilator [18]—interact with one another as
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Figure 1.1: Biochemical Circuit

illustrated in Figure 1.1. The “arrow” in ‘x a y’ indicates that species ‘x’ represses the

production of species ‘y.’ The concentrations of the species in this biochemical circuit

may then be modeled, in continuous time, by a system of differential equations such as
ξ̇1 = a1ξ1 + h1(ξ3)

ξ̇2 = a2ξ2 + h2(ξ1)

ξ̇3 = a3ξ3 + h3(ξ2)

,

where a1, a2, a3 < 0 are the rates of degradation, and h1, h2, h3 are nonincreasing func-

tions of their arguments. This scenario and many variations, such as the Goodwin model

of gene expression [22, 21, 42, 28], are studied in the context of molecular biology.

It is natural that the rates of degradation, as well as the strength of the interactions

between the species, may depend on environmental factors such as temperature or

pressure, as well as the concentrations of other enzymes and such. If this is the case,

then a more realistic model would have been a system of parametrized differential

equations of the form 
ξ̇1 = a1(λ)ξ1 + h1(λ, ξ3)

ξ̇2 = a2(λ)ξ2 + h2(λ, ξ1)

ξ̇3 = a3(λ)ξ3 + h3(λ, ξ2)

,

where the parameter λ lives in a parameter space Λ, and may be an ordered tuple

λ = (λ1, . . . , λm) encoding all relevant external factors upon which the dynamics of the

circuit depends.

The next step is to add noise to the values of the parameter λ. As noted above,

many different approaches to how this noise could be modeled have been considered.

One such approach is to introduce a stochastic process (λt)t>0 evolving on Λ, and



3

consider the system of “random differential equations” (“RDE”)
ξ̇1 = a1(λt(ω))ξ1 + h1(λt(ω), ξ3)

ξ̇2 = a2(λt(ω))ξ2 + h2(λt(ω), ξ1)

ξ̇3 = a3(λt(ω))ξ3 + h3(λt(ω), ξ2)

, (1.1)

now effectively parametrized by the random outcome ω in the probability space mod-

eling the underlying uncertainty.

In this work we will approach systems such as (1.1) from the point of view of “global

convergence to a unique equilibrium.”

1.0.1 Random Dynamics

In the late 1980’s, Ludwig Arnold conceived a deep and elegant approach to the founda-

tions of random dynamics. His paradigm of a random dynamical system (RDS) is based

on an ultimately simple idea: to view it as consisting of two ingredients, a stochastic (but

autonomous) noise process combined with a classical dynamical system that is driven

by this process. The noise process is itself described by a measure-preserving dynamical

system (MPDS ) θ : T × Ω → Ω, evolving on a probability space (Ω,F ,P) in discrete

or continuous time-increments encoded in T . This MPDS may represent random envi-

ronmental perturbations, internal variability, randomly fluctuating parameters, model

uncertainty, or measurement errors. But the formalism allows for deterministically pe-

riodic, or almost-periodic, driving processes as well. The resulting theory, developed

in a series of papers by many authors through the 1990’s, provides a seamless integra-

tion of classical ergodic theory with modern dynamical systems, giving a theoretical

framework parallel to classical smooth and topological dynamics—stability, attractors,

bifurcation theory, and so forth—, while allowing one to treat in a unified way the

most important classes of dynamical systems evolving subject to randomness—random

difference or differential equations,

x+ = f(θnω, x) , ẋ = f(θtω, x) ,

as well as stochastic differential equations [4, 12, 8].
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1.0.2 Systems with Inputs and Outputs

Our motivation for studying RDS with inputs and outputs arises from the need to pro-

vide foundations for a constructive theory of interconnections and feedback for stochas-

tic systems, one that will eventually generalize successful and widely applied determin-

istic approaches to the analysis and design of dynamic networks [35, 30, 31]. To explain

this need, we recall the basic paradigm of (deterministic) control theory. The objects

of study are systems with inputs and outputs. One may think, for concreteness, of a

system of ordinary differential equations

ẋ1 = f1(x1(t), . . . , xn(t), u1(t), . . . , uk(t))

...

ẋn = fn(x1(t), . . . , xn(t)︸ ︷︷ ︸
states

, u1(t), . . . , uk(t)︸ ︷︷ ︸
inputs

)

(1.2)

supplemented by a set of output variables y1, . . . , yp,

yj(t) = hj(x(t)) , j = 1, . . . , p ,

which are indeed functions of the state vector x. The inputs u1, . . . , uk may be viewed as

controls, forcing functions, external signals, or stimuli, depending on the context. Under

suitable hypotheses on the inputs and the righthand side f , the system of differential

equations (1.2) will generate a (deterministic) flow ϕ(t, x, u), giving the state of the

system at time t when it started at x and is subject to the input u = (u1, . . . , uk) [52].

The outputs y1, . . . , yp represent responses, typically a partial readout of the system

state vector (x1, . . . , xn).

Such formalism, which originated in the analysis of engineering systems, is also nat-

ural in biology. Cells are not autonomous systems; they process external information,

provided by physical (radiation, mechanical, temperature) or chemical (drugs, growth

factors, hormones, nutrients) inputs. Cells also produce signals which we may view as

outputs, such as chemical signals sent to other cells, commands to motors that move

flagella or pseudopods, or the internal activation of transcription factors which may

be monitored by measurement technologies. Thus the control theory formalism, in
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Figure 1.2: A system viewed as an interconnection of subsystems with inputs and
outputs

contrast to dynamical systems theory—which deals with isolated systems—is not only

reasonable, but also natural in biology.

There is also a different, and not as intuitive, reason for considering systems with

inputs and outputs. Cells can be seen as composed of a large number of subsystems;

“networks” of proteins, RNA, DNA, and metabolites involved in various processes, such

as cell growth, maintenance, division, and death. Indeed, one of the important themes

in current molecular biology is that of understanding cell behavior in terms of cascades

and feedback interconnections of elementary “modules” [25, 37, 17]. The idea is that

one should be able to decompose large systems into smaller subsystems, and then study

the dynamics of the larger system in light of the (hopefully simpler) dynamics of the

smaller modules, and how these modules interact with each other through the feedback

interconnections. As illustrated in Figure 1.2, one might represent this situation as an

overall system composed of four subsystems. Although the figure also shows inputs

and outputs for the overall system, even if the entire system were autonomous (no

arrows into or out of the large box), one must necessarily consider subsystems that

admit time-dependent input signals and produce output signals, in order to be able to

define such interconnections. Thus, when using a decomposition-based approach, the

control-theoretic formalism is a necessity, even in the analysis of autonomous systems.

1.0.3 Thesis Outline

The main objective of this work is to carry the successful decomposition-based, feedback

interconnections approach to deterministic systems, outlined above, over to the RDS



6

theory of Arnold. This entails,

(1) carefully extending Arnold’s axiomatic framework to accommodate stochastic in-

puts, addressing all emerging algebraic and measurability technicalities,

(2) giving a treatment of cascades and feedback interconnections of random systems

with stochastic inputs and noisy outputs, including the search for an appropriate

mode of convergence which interacts well with desirable regularity assumptions

on the outputs, and transfers over from subsystem to subsystem, and

(3) the application of this theory to the analysis of examples not encompassed by the

previously existing theory of RDS.

We define a random dynamical system with inputs (RDSI ) to be an ordered triple

(θ, ϕ,U) in which θ is an MPDS, as described in Section 2.1, U is a class of admissible

stochastic inputs (Definition 3.14), and ϕ(t, ω, x, u) is a semiflow driven by θ, giving the

state of the system at time t when starting from initial state x and subject to random

outcome ω and input u (Definition 3.16). This notion extends the concept of RDS of

Arnold in the sense that an RDSI evolving subject to a stationary input reduces to

an RDS (Lemma 3.29 and Proposition 3.30). A random dynamical system with inputs

and outputs (RDSIO ), in turn, is defined as an ordered quadruple (θ, ϕ,U , h) in which

(θ, ϕ,U) is an RDSI and h is an output function—a readout of the current state of the

system, and which also depends on the random outcome ω.

The main result of this work is Theorem 4.28, the Small-Gain Theorem (SGT ). The

key ingredients of this result are,

(1) the idea of monotonicity [8], which we extend for RDSI,

(2) the notion of temperedness, a growth condition (along orbits of the underlying

MPDS) for random variables from which we derive concepts of convergence and

continuity, and

(3) a converging input to converging state (CICS ) result, namely, Theorems 4.11 and

4.12.
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To facilitate the discussion throughout the remainder of this introduction, we pro-

vide informal statements of Theorems 4.11 and 4.28 as “Theorems” 1.1 and 1.2, respec-

tively. These will be dropped in favor of the formal statements in Chapter 4 once we

have developed the needed language and notation.

Theorem 1.1 (CICS Redux). Suppose that

(i ) X,U are separable Banach spaces, partially ordered by solid, normal, minihedral

cones, and

(ii ) (θ, ϕ,U) is a tempered, monotone RDSI with a

(iii ) continuous input to state characteristic K.

If u is a tempered input with asymptotically precompact (pullback ) tails, and which

converges (in the tempered sense ) to a stationary input u∞, then ϕ(t, ω, x, u) converges

to K(u∞) for every tempered initial state x.

The input to state characteristic K in the assumptions of the theorem above is a

mapping associating, to each (tempered) stationary input u fed into the system, a

unique, globally attracting equilibrium K(u) to which the system converges (in the

tempered sense) for every (tempered) initial state x. For an RDSIO, the output can

be composed with the i/s characteristic, yielding the input to output characteristic

KY of the system. For an RDSIO arising from “opening the loop” in an RDS, this

i/o characteristic is an operator on the space of tempered inputs. If this operator

has a unique, globally attracting fixed point, then we say that the system satisfies

the small-gain condition (SGC ). The small-gain condition combined with estimates

from monotonicity reduces the behavior of closed-loop trajectories of the system to the

circumstances in Theorem 1.1, yielding the global convergence in the SGT,

Theorem 1.2 (SGT Redux). Suppose that

(i ) X,U are separable Banach spaces, partially ordered by solid, normal, minihedral,

and

(ii ) (θ, ϕ,U , h) is a tempered, monotone RDSIO with a
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(iii ) continuous input/state characteristic, and a

(iv ) order-preserving or order-reversing output which preserves temperedness.

If the i/o characteristic of the RDSIO (θ, ϕ,U , h) satisfies the SGC, then the closed-loop

of (θ, ϕ,U , h) has a unique, globally attracting equilibrium in the universe of tempered

initial states.

To illustrate how Theorem 1.2 may be applied, lets go back to our toy example, the

system generated by (1.1) modeling the biochemical circuit illustrated in Figure 1.1. If

the noise process (λt)t>0 is stationary, meaning that

P(λt1+s ∈ A1, . . . , λtk+s ∈ Ak) ≡ P(λt1 ∈ A1, . . . , λtk ∈ Ak) ,

then (1.1) can be rewritten in the “canonical” form
ξ̇1 = a1(θtω)ξ1 + h1(θtω, ξ3)

ξ̇2 = a2(θtω)ξ2 + h2(θtω, ξ1)

ξ̇3 = a3(θtω)ξ3 + h3(θtω, ξ2)

, (1.3)

in terms of an MPDS θ : R>0×Ω→ Ω, for appropriately redefined Ω, a1, a2, a3, h1, h2

and h3.

Under suitable hypotheses on the aj ’s and hj ’s, this system of random differential

equations generates an autonomous RDS. We now describe how our theory of RDSIO

can be used to study the asymptotic behavior of this RDS.

First, one opens up the feedback loop, rewriting the model as a system of random

differential equations with inputs (RDEI )
ξ̇1 = a1(θtω)ξ1 + u

(1)
t (ω)

ξ̇2 = a2(θtω)ξ2 + u
(2)
t (ω)

ξ̇3 = a3(θtω)ξ3 + u
(3)
t (ω)

, (1.4)

together with a set of outputs
u

(2)
t (ω) = y

(1)
t (ω) = h2(θtω, ξ1)

u
(3)
t (ω) = y

(2)
t (ω) = h3(θtω, ξ2)

u
(1)
t (ω) = y

(3)
t (ω) = h1(θtω, ξ3)

. (1.5)
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Now the RDEI in (1.4) is not only linear, but also monotone (with respect to the

partial order induced by the positive orthant). It generates an RDSI which, under the

hypotheses that θ is ergodic and the aj ’s are “negative on average,” possesses a well-

defined, tempered continuous i/s characteristic K, that is, a map associating a globally

attracting equilibrium K(u) to each (tempered) stationary input u. Composing this i/s

characteristic with the output of the system, (1.5), we obtain its i/o characteristic KY .

It remains to check whether the i/o characteristic satisfies the SGC. This will be

the case, for instance, if the h’s are of the form

h(ω, x) =
α(ω)

β(ω) + g(x)
,

where α and β are uniformly bounded away from zero and infinity along each orbit of

θ, and g is a continuous, bounded, order-preserving, sublinear map. It can be shown,

using the Thompson metric induced by the underlying partial order (Appendix D), that

the i/o characteristic has a unique, globally attracting fixed point u∞. It then follows

from the SGT that K(u∞), the state characteristic corresponding to u∞, is a unique,

globally attracting equilibrium of the original, closed-loop system,

ξ̇1 = a1(θtω)ξ1 +
α1(θtω)

β1(θtω) + g1(ξ3)

ξ̇2 = a2(θtω)ξ2 +
α2(θtω)

β2(θtω) + g2(ξ1)

ξ̇3 = a3(θtω)ξ3 +
α3(θtω)

β3(θtω) + g3(ξ2)

. (1.6)

1.1 How This Work Is Organized

We end this introduction with a more thorough description of the content of each

chapter.

1.1.1 Preliminary Notions

Chapter 2 lays down the foundations upon which our theory rests.

In Section 2.1, we review the concept of measure preserving dynamical systems,

introducing much of the notation and terminology for our random analogues of points,
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paths and constant trajectories in the deterministic theory, as well as key conventions

we shall follow in dealing with them.

Sections 2.2 and 2.3 are self-contained reviews of all the concepts we shall need from

the theory of random sets and functional analysis.

In Section 2.4 we develop the notions of convergence with respect to which we will

study asymptotic behavior. This includes an extension of the concepts of lim inf and

lim sup to stochastic processes evolving in certain partially ordered spaces (possibly

infinite-dimensional).

1.1.2 Random Dynamical Systems with Inputs and Outputs

In this chapter we develop the axiomatic foundations of our theory of random dynamical

systems with inputs and outputs.

Section 3.1 is a brief review of the necessary elements from Arnold’s RDS theory,

setting the stage for the introduction of RDSIO in Section 3.2, where they are motivated

and defined.

The appropriate stochastic analogue of constant inputs in the deterministic the-

ory are further discussed in Section 3.3, followed by the definition of input to state

characteristics for RDSI.

Although some examples are already given in Sections 3.1–3.3 along with the de-

velopment of the theory, we close the chapter in Section 3.4 with a few more examples

and simulations in discrete time, plus a thorough description of sufficient conditions for

random differential equations with inputs to generate RDSI.

1.1.3 Monotone RDSIO and a Small-Gain Theorem

This is the main chapter of this work.

We start by extending the concept of monotonicity to RDSI in Section 4.1. This

is applied in Section 4.2 to derive two converging input to converging state results for

monotone RDSI.

Output functions, which had been considered in the previous chapter mostly from
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an algebraic perspective, are reconsidered in Section 4.3, where we discuss their mea-

surability, regularity, growth and monotonicity properties.

The Small-Gain Theorem, the main result of this work, is proved in Section 4.4,

after having introduced closed-loop trajectories and the Small-Gain Condition.

Section 4.5 is devoted to applications of the SGT to establish unique, globally at-

tracting equilibria for some classes of discrete and continuous RDS.

1.1.4 Future Work

We started this work with the clear goal of extending the SGT for RDS. Thus many

questions which, although important, might have distracted us from this objective,

were set aside as we looked for the path to the SGT. In the last chapter of this work

we sketch a few possible directions for future research.

1.1.5 The Appendices

We wanted for this work to be as self-contained as possible. We do not claim originality

over any of the content in the appendices. However, it was often difficult to find classical

results presented exactly the way we needed them. In other occasions, they had to be

patched together from various sources. Finally, there were a few situations in which it

was convenient to refer to a technique or notation in the proof of a classical result, in

which case it was desirable to have this result readily available for reference. This was

collected into Appendices A–D for the reader’s convenience.
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Chapter 2

Preliminary Notions

We build upon the “random dynamical systems” framework of Arnold [4]. The foun-

dation for this framework is the concept of “measure preserving dynamical system,”

recalled in Definition 2.1 below. Throughout this chapter, we expand upon this con-

cept, connecting it to stochastic processes and notions of “temperedness” and “long-

term behavior.” Along the way we introduce some notation and terminology not found

in [4] to facilitate the discussion. This will set the stage for a brief review of random

dynamical systems in the beginning of next chapter, then followed by the introduction

of our new concept of “random dynamical systems with inputs.”

2.1 Measure Preserving Dynamical Systems

Definition 2.1 (Measure-Preserving Dynamical System). A measure - preserving dy-

namical system1 (MPDS ) is an ordered quadruple

θ = (Ω,F ,P, (θt)t∈T )

consisting of a probability space (Ω,F ,P), a topological group (T ,+), and a measurable

flow (θt)t∈T of invertible, measure-preserving maps Ω→ Ω—in other words,

θ : T × Ω −→ Ω

is a (B(T ) ⊗ F)-measurable group action2 with the property that P ◦ θt = P for each

t ∈ T . 4

1Arnold [4, page 635] and Chueshov [8, Definition 1.1.1 on page 10] refer to such an object primarily
as a ‘metric dynamical system.’ We find ‘measure-preserving,’ which Arnold also uses as a synonym,
less confusing and more informative.

2θt+sω = θtθsω for every s, t ∈ T , for every ω ∈ Ω.
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Example 2.2 (Bernoulli Shifts). Consider a probability space (Ω0,F0,P0). Let

Ω := (Ω0)Z

be the family of all two-sided sequences k 7→ ωk ∈ Ω0, k ∈ Z. As usual, we denote such

sequences as ω = (ωk)k∈Z. Recall that a cylinder subset of Ω is a set of the form

{ω ∈ Ω ; ωkj ∈ Ej , j = 1, . . . ,m}

for some m ∈ N, Ej ∈ F0, kj ∈ Z, j = 1, . . . ,m. Let C denote the family of all cylinder

subsets of Ω and let

F := σ(C)

be the σ-algebra generated by C. Define P′ : C → [0, 1] by

P′(C) :=
m∏
j=1

P0(Ej) (2.1)

for every

C = {ω ∈ Ω ; ωkj ∈ Ej , j = 1, . . . ,m} ∈ C . (2.2)

In particular, P′(∅) = 0 and P′(Ω) = 1. Well-established measure theory results can be

applied to uniquely extend P′ to a probability measure

P : F → [0, 1]

(see constructions developed in Sections 1.4 and 2.5 of [20]). This yields the probability

space (Ω,F ,P).

Now set T := Z and let θ : Z× Ω→ Ω be the map defined by

θnω := (ωk+n)k∈Z , (n, ω) ∈ Z× Ω (2.3)

—in other terms, one shifts the original sequence, (ωk)k∈Z, n slots to the left. Note

that θn is invertible, with θ−1
n = θn for each n ∈ Z and θ0 = idΩ. For any cylinder set

C ∈ C as in (2.2) and any n ∈ Z, we have

(θn)−1(C) = {ω ∈ Ω ; ωkj−n ∈ Ej , j = 1, . . . , k} ∈ C , (2.4)
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hence

θ−1(C) =
⋃
n∈Z

(
{n} × (θn)−1(C)

)
∈ B(Z)⊗F .

Since C ∈ C was chosen arbitrarily, this shows that θ is (B(Z) ⊗ F)-measurable. It

follows straight from the definition in (2.3) that θ is a group action of Z on Ω, for

θn1+n2ω = (ωk+n1+n2)k∈Z

= θn1(ωk+n2)k∈Z

= θn1θn2ω , ∀ω ∈ Ω , ∀n1, n2 ∈ Z .

Furthermore, we have P′◦θn = P′ for every n ∈ Z by (2.1) and (2.4). Therefore we must

indeed have P ◦ θn = P for every n ∈ Z also, otherwise the uniqueness of the extension

of P′ to P would be violated. This completes the construction of the (discrete) MPDS

θ = (Ω,F ,P, (θt)t∈T ) .

In what follows, whenever we say ‘let θ be the Bernoulli shift of (Ω0,F0,P0),’ we shall

mean the MPDS constructed as just described above. ♦

In this work we will be dealing with MPDS’s mainly in the abstract setting. For

several other concrete examples see Chueshov [8, Section 1.1].

The “time group” T will always refer to either R or Z, depending on whether one

is talking about continuous or discrete time, respectively. In either case, T will be

equipped with the usual3 order and T>0 will denote the nonnegative elements of T .

Therefore the notations ‘ t ∈ T>0 ’ and ‘ t > 0 ’ will be used interchangeably.

We will occasionally need to make measure-theoretic considerations about T , or

Borel subsets of it. If T = R, that is, in continuous time, then we tacitly equip any

Borel subset of T with the measure induced by the Lebesgue measure on R. If T = Z,

discrete time, then we think of the counting measure on Z.

When T = Z, it follows from the group action that θ is completely determined by θ1.

In that case we will abuse notation and use the same θ to denote both the underlying

MPDS and θ1.

3As far as the abstract theory goes, (T ,+) could have been an arbitrary topological group, and
(T ,>) could have been any directed set such that the partial order, topology and group operation were
compatible in some sense. We will not discuss any applications in such general context though.



15

The symbols ‘θ,’ ‘Ω,’ ‘F ,’ ‘P’ and ‘T ’ are reserved throughout this entire work to have

the meanings and perform the functions assigned to them in Definition 2.1. Moreover,

whenever we talk about an ‘MPDS θ,’ it is tacitly understood that θ = (Ω,F ,P, (θt)t∈T ),

unless otherwise specified.

Definition 2.3 (θ-Invariant Sets). Given an MPDS θ, a set B ∈ F is said to be

θ-invariant if θt(B) = B for all t ∈ T . 4

When MPDS are involved, it is often the case that a condition depending on ω ∈ Ω is

stated to be satisfied for all ω ∈ Ω̃, for some θ-invariant Ω̃ ⊆ Ω of full measure4. It is

often not necessary to specify said Ω̃ though. So we say for θ-almost all ω ∈ Ω or write

∀̃ω ∈ Ω

to mean ‘for all ω ∈ Ω̃, for some θ-invariant set Ω̃ ⊆ Ω of full measure.’ See also

Subsection 2.1.1 below.

The next two definitions will not be needed until much later. We state them here

so they are easier to find.

Definition 2.4 (Ergodic MPDS). An MPDS θ is said to be ergodic if, whenever B ∈ F

is θ-invariant, then we have either P(B) = 0 or P(B) = 1. 4

Definition 2.5 (Periodic MPDS). An MPDS θ is said to be periodic with period P > 0

or P -periodic if θt+P = θt for every t ∈ T . 4

The next example will be needed for the construction carried out in Example 2.10

further down.

Example 2.6 (Factoring of MPDS). Given an MPDS θ with T = Z or R, and given

k ∈ T>0, let

θ̂ : T × Ω −→ Ω

(t, ω) 7−→ θktω
.

Then θ̂ is also an MPDS. To see this, first note that θ̂ is the composition of θ with

the mapping

(t, ω) 7−→ (kt, ω) ∈ T × Ω , (t, ω) ∈ T × Ω . (2.5)

4In other words, θtΩ̃ = Ω̃ for all t ∈ T , and P(Ω̃) = 1.
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Now θ is (B(T )⊗F)-measurable by the definition of MPDS, while (2.5) is continuous in

the first coordinate and constant in the second, and thus also (B(T )⊗F)-measurable.

Therefore θ̂ is (B(T )⊗F)-measurable. The other properties of an MPDS are inherited

by θ̂ directly from θ. ♦

2.1.1 θ-Almost Everywhere Equal Maps

Random variables or θ-stochastic processes which agree on a θ-invariant subset of full

measure of Ω will be identified in the most natural way. We briefly describe this

identification in an abstract setting which will comprise all situations we shall encounter

in this work.

Let G and H be any nonempty sets and let HG×Ω be the family of all maps G×Ω→

H. Then

a, b ∈ HG×Ω , a ∼ b ⇐⇒ a(g, ω) = b(g, ω) , ∀g ∈ G , ∀̃ω ∈ Ω ,

is an equivalence relation in HG×Ω. Indeed, it is immediate from the condition above

that ∼ is reflexive and symmetric. And since the intersection of two θ-invariant subsets

of full measure is also a θ-invariant subset of full measure, we see that∼ is also transitive.

As usual, we denote the family HG×Ω modulo this equivalence relation by HG×Ω/ ∼

and the equivalence class of an element a ∈ HG×Ω by [a].

Now let G,H1, H2, H3 be any nonempty sets and suppose that there is an operation

∗ : H1 ×H2 → H3 linking H1 and H2 to H3. This naturally induces an operation

∗ : HG×Ω
1 ×HG×Ω

2 −→ HG×Ω
3

linking HG×Ω
1 and HG×Ω

2 to HG×Ω
3 , defined by

(a ∗ b)(g, ω) := a(g, ω) ∗ b(g, ω) , (g, ω) ∈ G× Ω . (2.6)

This operation can now be projected onto

∗ : (HG×Ω
1 / ∼)× (HG×Ω

2 / ∼) −→ HG×Ω
3 / ∼

([a], [b]) 7−→ [a ∗ b]
,
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in the sense that it is well-defined irrespective of the representative. This will follow

from (2.6) together with, once again, the fact that the intersection of two θ-invariant

subsets of full measure are also a θ-invariant subset of full measure.

Thus in what follows, whenever pertinent, we tacitly identify HG×Ω with HG×Ω/ ∼,

drop the brackets and so write a = b to mean a ∼ b. This abstract construction applies

to both θ-stochastic processes—upon replacing G by the appropriate discrete or contin-

uous time group T—and random variables—upon taking G to be an arbitrary singleton.

The operation ∗ will typically be addition of vectors or scalars, or multiplication of a

vector by a scalar.

2.1.2 θ-Stationary Processes

Let X be a topological space and consider the measurable space (X,B(X)) consisting

of X equipped with its Borel σ-algebra. In the context of random dynamical systems,

the analogue of a point in the state space X for a deterministic system is a random

variable Ω → X—that is, a Borel-measurable map Ω → X. In this work we use the

terms ‘random variable’ and ‘Borel-measurable map’ interchangeably (see also Defini-

tion 2.11 and observation right after it). We denote the set of all random variables into

a topological space X by XΩ
B .

Similarly, the analogue of paths T>0 → X in the deterministic case will be θ-

stochastic processes5 T>0 × Ω → X—in other words, (B(T>0) ⊗ F)-measurable maps

T>0 × Ω → X. Given any such map q, we denote qt := q(t, ·) : Ω → X for each t > 0.

In particular, qt ∈ XΩ
B for every t > 0 by Lemma C.3(b). The set of all θ-stochastic

processes on a topological space X is denoted by SXθ .

We discuss next an analogue, in the stochastic setting, of constant paths in the

deterministic setting. We start by defining a “translation” or “shift” operator in SXθ .

5A ‘θ-stochastic process’ is indeed a stochastic process in the traditional sense. We use the prefix ‘θ-’
to emphasize the underlying probability space (Ω,F ,P) and time semigroup T>0 specified by the given
MPDS.
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For each s ∈ T>0, define6

ρs : SXθ −→ SXθ
q 7−→ ρs(q)

(2.7)

by

[ρs(q)]t(ω) := qt+s(θ−sω) , (t, ω) ∈ T>0 × Ω . (2.8)

The symbol ρ is reserved in this work to denote this operator. So even if we are working

with two θ-stochastic processes q1 ∈ SX1
θ and q2 ∈ SX2

θ evolving on (possibly different)

topological spaces X1, X2, we shall use the same ρ to denote their shifts. In other words,

for any s1, s2 > 0, the maps ρs1(q1) : T>0 × Ω → X1 and ρs2(q2) : T>0 × Ω → X2 are

simply the θ-stochastic process defined on the appropriate topological space by (2.8).

Definition 2.7 (θ-Stationary Processes). A θ-stochastic process q̄ ∈ SXθ is said to be

θ-stationary if

ρs(q̄) = q̄ , ∀s > 0 ,

in the sense of the identification in the previous subsection—that is,

[ρs(q̄)]t(ω) = q̄t(ω)

for all s, t ∈ T>0, for θ-almost all ω ∈ Ω. 4

Contrary to the convention in the terminology for ‘θ-stochastic processes’ above, the

prefix ‘θ-’ is really relevant in the definition of θ-stationary processes. We will see in

Proposition 2.9 that a θ-stationary θ-stochastic process q̄ is indeed stationary in the

traditional stochastic processes sense—that is,

P(q̄t1 ∈ A1, . . . , q̄tk ∈ Ak) = P(q̄t1+h ∈ A1, . . . , q̄tk+h ∈ Ak)

for all k ∈ N, for any A1, . . . , Ak ∈ F , and any t1, . . . tk, h > 0 (see, for instance, [40,

Section 1.3]). The converse, however, is not true, as illustrated in Example 2.10. In

fact, this same example shows that a θ-stochastic process may be θ-stationary with

respect to an MPDS θ = (Ω,F ,P, (θt)t∈T ), while not being θ̂-stationary with respect to

another MPDS θ̂ = (Ω,F ,P, (θ̂t)t∈T ) defined over the same probability space (Ω,F ,P)

6We prove in Lemma C.11 that ρs is well-defined for every s > 0.
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and time group (T ,+). But before we can discuss that any further, we first need the

characterization of θ-stationary processes given in the next result.

Lemma 2.8. A θ-stochastic process q̄ ∈ SXθ is θ-stationary if, and only if there exists

a random variable q ∈ XΩ
B such that

q̄t(ω) = q(θtω) , ∀t ∈ T>0 , ∀̃ω ∈ Ω . (2.9)

Proof. (Sufficiency) Suppose that (2.9) holds for some q ∈ XΩ
B and let Ω̃ ⊆ Ω be a

corresponding θ-invariant set of full measure. Pick any s ∈ T>0. Then

[ρs(q̄)]t(ω) = q̄t+s(θ−sω) = q(θt+sθ−sω) = q(θtω) = q̄t(ω) .

for all t ∈ T>0, for all ω ∈ Ω̃. So q̄ is θ-stationary.

(Necessity) Suppose that q̄ ∈ SXθ is θ-stationary and define q ∈ XΩ
B by

q(ω) := q̄0(ω) , ω ∈ Ω . (2.10)

We have

q̄t+s(θ−sω) = [ρs(q̄)]t(ω) = q̄t(ω) , ∀s, t ∈ T>0 , ∀̃ω ∈ Ω .

Setting t = 0 and renaming s as t, we then have

q̄t(θ−tω̂) = q̄0(ω̂) = q(ω̂) , ∀t ∈ T>0 , ∀̃ω̂ ∈ Ω .

Let Ω̃ ⊆ Ω be a corresponding θ-invariant set of full measure. Given any ω ∈ Ω̃ and

any t ∈ T>0, we may apply this property with ω̂ = θtω due to the θ-invariance of Ω̃,

thus obtaining

q̄t(ω) = q(θtω) .

This shows that (2.9) holds.

Note that the random variable q associated to q̄ is unique up to a θ-invariant set

of measure zero. Indeed, it is determined θ-almost everywhere by Equation (2.10). We

will always use an overbar to denote the θ-stationary θ-stochastic process q̄ associated

with a given random variable q.
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Proposition 2.9. A θ-stationary stochastic process q̄ ∈ SXθ is stationary in the sense

that

P(q̄t1 ∈ A1, . . . , q̄tk ∈ Ak) = P(q̄t1+h ∈ A1, . . . , q̄tk+h ∈ Ak) (2.11)

for all k ∈ N, for any A1, . . . , Ak ∈ F , and any t1, . . . tk, h > 0.

Proof. Let q := q̄0 be the generator of q̄ given by Lemma 2.8. In particular, q̄t and q(θt·)

differ only on the same (θ-invariant) subset of probability zero for all t > 0. Therefore

P(q̄t1 ∈ A1, . . . , q̄tk ∈ Ak) = P(q(θt1 ·) ∈ A1, . . . , q(θtk ·) ∈ Ak) ,

P(q̄t1+h ∈ A1, . . . , q̄tk+h ∈ Ak) = P(q(θt1+h·) ∈ A1, . . . , q(θtk+h·) ∈ Ak) ,

and so we conclude that (2.11) is equivalent to

P(q(θt1 ·) ∈ A1, . . . , q(θtk ·) ∈ Ak) = P(q(θt1+h·) ∈ A1, . . . , q(θtk+h·) ∈ Ak) ,

which we now proceed to prove.

First note that

{ω ∈ Ω ; q(θtω) ∈ A} = θ−t({ω ∈ Ω ; q(ω) ∈ A})

= θ−t
(
q−1(A)

)
, ∀t > 0 , ∀A ∈ F .

Denote

A′j := q−1(Aj) , j = 1, . . . , k .

Because θ−h is invertible, and in virtue of the group action property, we also have

θ−h
(
θ−t1(A′1) ∩ · · · ∩ θ−tk(A′k)

)
=

(
θ−hθ−t1(A′1) ∩ · · · ∩ θ−hθ−tk(A′k)

)
= θ−h−t1(A′1) ∩ · · · ∩ θ−h−tk(A′k) .

Furthermore,

P
(
θ−h
(
θ−t1(A′1) ∩ · · · ∩ θ−tk(A′k)

))
= P

(
θ−t1(A′1) ∩ · · · ∩ θ−tk(A′k)

)
by the measure-preserving property. Thus

P(q(θt1 ·) ∈ A1, . . . , q(θtk ·) ∈ Ak) = P(θ−t1(A′1) ∩ · · · ∩ θ−tk(A′k))

= P(θ−h−t1(A′1) ∩ · · · ∩ θ−h−tk(A′k))

= P(q(θt1+h·) ∈ A1, . . . , q(θtk+h·) ∈ Ak) .
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Since k ∈ N, A1, . . . , Ak ∈ F and t1, . . . tk, h > 0 were chosen arbitrarily, this completes

the proof.

Example 2.10 (Stationarity Does Not Imply θ-Stationarity). We observe that the con-

verse of Proposition 2.9 does not hold, as illustrated by the following simple exam-

ple. Let θ be the Bernoulli shift of (Ω0,F0,P0), where Ω0 := {0, 1}, F0 := 2Ω0 , and

P0 : F0 → [0, 1] is determined by

P0({0}) = P0({1}) =
1

2
.

Let q : Ω→ [0, 1] be the random variable defined by

q(ω) := ω0 , ω = (ωk)k∈N ∈ Ω ,

and let q̄ be the θ-stationary θ-stochastic process generated by q via Lemma 2.8, defined

by

q̄n(ω) := q(θnω) , (n, ω) ∈ Z× Ω . (2.12)

By Proposition 2.9, q̄ is a stationary process.

Now let θ̂ be the MPDS over (Ω,F ,P) defined as in Example 2.6 with, say, k = 2.

We will show that q̄ is not θ̂-stationary. Suppose on the contrary that it is. Then

q̄n(ω) = q̄0(θ̂nω) = q(θ̂nω) , ∀n ∈ Z , ∀ω ∈ Ω̂ , (2.13)

where Ω̂ is a θ̂-invariant subset of full-measure of Ω. The first equality follows from

Lemma 2.8, and the second one follows from the construction of q̄. Combining (2.12)

and (2.13) with n = 1, we obtain

q(θ̂1ω) = q(θ2ω) = ω2 = ω1 = q(θ1ω) , ∀ω ∈ Ω̂ .

Thus Ω̂ is contained in

D := {ω ∈ Ω ; ω2 = ω1}

=

2⋃
i=1

 0∏
j=−∞

Ω0

× {i} × {i} ×
 ∞∏
j=3

Ω0

 .
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Since P(Ω̂) = 1, we must then have P(D) = 1 also. This is a contradiction with the

fact that

P(D) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2
< 1

by construction. Therefore q cannot be θ̂-stationary. ♦

2.2 Random Sets

Definition 2.11 (Random Set). Given a topological space X, a multifunction D : Ω→

2X is said to be a random set (or simply measurable ) if

D−1(U) := {ω ∈ Ω ; D(ω) ∩ U 6= ∅} ∈ F

for every open set U ⊆ X. 4

Note that

ω 7−→ {v(ω)} , ω ∈ Ω ,

is a random set for any random variable v ∈ XΩ
B . Conversely, if D is a random set such

that D(ω) is a singleton {vω} for each ω ∈ Ω, then the mapping

ω 7−→ vω , ω ∈ Ω ,

is a random variable. Thus we will sometimes refer to a random variable v as a random

singleton, if for some reason framing said random variable as a random set is pertinent.

Proposition 2.12. Given a topological space X, a multifunction D : Ω → 2X is mea-

surable if, and only if its closure D : Ω→ 2X , defined by

D(ω) := D(ω) , ω ∈ Ω ,

is also measurable.

Proof. Indeed, for any open subset U ⊆ X and any subset A ⊆ X, we have A∩U 6= ∅

if, and only if A ∩ U 6= ∅. Thus

{ω ∈ Ω ; D(ω) ∩ U 6= ∅} = {ω ∈ Ω ; D(ω) ∩ U 6= ∅}

for every open subset U ⊆ X. This proves the equivalence.
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Lemma 2.13. Let X be a topological space. If D,E : Ω → 2X are measurable multi-

functions, then their union D ∪ E : Ω→ 2X ,

(D ∪ E)(ω) := D(ω) ∪ E(ω) , ω ∈ Ω ,

is also measurable.

Proof. Fix arbitrarily an open subset U ⊆ X. Then

(D ∪ E)−1(U) = D−1(U) ∪ E−1(U) ,

which belongs to F .

Example 2.14 (Random Open/Closed Balls). This example generalizes Example 1.3.1

in [8]. Let (X, d) be a metric space. Given any random variables a : Ω → X and

r : Ω→ R>0, let B : Ω→ 2X be the multifunction defined by

B(ω) := Br(ω)(a(ω)) = {x ∈ X ; d(x, a(ω)) < r(ω)} , ω ∈ Ω .

Then B is a random set, referred to as the random open ball of radius r and centered

at a. Indeed, let U be any open subset of X. First note that

B−1(U) = {ω ∈ Ω ; B(ω) ∩ U 6= ∅}

= {ω ∈ Ω ; a(ω) ∈ Ur(ω)} ,

where we denote

Sδ :=
⋃
x∈S

Bδ(x) , S ⊆ X , δ > 0 .

Now let (sn)n∈N be any enumeration of the nonnegative rational numbers. Then

{ω ∈ Ω ; a(ω) ∈ Ur(ω)} =
∞⋃
n=1

(
[r > sn] ∩ [a ∈ Usn ]

)
, (2.14)

where we denote

[r > sn] := {ω ∈ Ω ; r(ω) > sn} , n ∈ N ,

and, likewise,

[a ∈ Usn ] := {ω ∈ Ω ; a(ω) ∈ Usn} , n ∈ N .
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The righthand side in (2.14) is clearly F-measurable, since a and r are assumed to be

random variables. Thus B−1(U) is F-measurable. Since the open subset U ⊆ X was

chosen arbitrarily, this proves that B is a random set.

Now consider the multifunction B : Ω→ 2X defined by

B(ω) := Br(ω)(a(ω)) , ω ∈ Ω .

Then

B(ω) = B(ω) , ω ∈ Ω .

So it follows from Proposition 2.12 that B is also a random set. We shall refer to B as

the random closed ball of radius r and centered at a. ♦

2.2.1 Polish Spaces

The concept of random set is much easier to deal with when the underlying topological

space is separable and metrizable by a complete metric. Whenever an abbreviation

may be convenient, we shall follow the well-established tradition of referring to those as

Polish spaces. In Polish spaces there are several properties equivalent to that of being

a random set, providing us with more tools to check for measurability. We list some of

these in the propositions below.

Proposition 2.15. Suppose that (X, d) is a separable metric space. A multifunction

D : Ω→ 2X is a random set if, and only if

ω 7−→ dist(x,D(ω)) := inf
y∈D(ω)

d(x, y) , ω ∈ Ω ,

defines a Borel-measurable7 map Ω→ R>0 for each x ∈ X.

Proof. See [27, Proposition 1.4 on page 142].

The two standard pieces of terminology below will not be used very often throughout

the rest of this work. They will, however, make it easier to parse the statement of

Proposition 2.18 below.

7Our convention is that inf ∅ := +∞.
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Definition 2.16 (Representation of Multifunctions). Let Ω, X, Y be nonempty sets,

D : Ω→ 2X and g : Ω×Y → X. We say that the pair (Y, g) represents the multifunction

D if

g(ω, Y ) := {g(ω, y) ; y ∈ Y } = D(ω)

for each ω ∈ Ω. 4

Definition 2.17 (Carathéodory Maps). Let (Ω,F) be a measurable space, X and Y

be topological spaces. A map g : Ω× Y → X is said to be Carathéodory if

g(ω, ·) : Y −→ X

is continuous for every ω ∈ Ω and

g(·, y) : Ω −→ X

is F-measurable for every y ∈ Y . 4

If Y is a separable8 metric space and X is a metric space, then a Carathéodory map

g : Ω×Y → X is, in fact, (F⊗B(Y ))-measurable, sometimes expressed simply as jointly

measurable (see [27, Proposition 1.6 on page 142]). As we noted before, in this work X

and Y will often have at least the topological structure of a Polish space, in which case

Carathéodory maps will then be jointly measurable.

Proposition 2.18. Suppose that D : Ω → 2X\{∅} is a closed random set in a Polish

space X. Then there exist a Polish space Y and a Carathéodory map g : Ω × Y → X

such that (Y, g) represents D. Furthermore, for each metric dX in X, a metric dY in

Y can be chosen9 such that

dX(g(ω, y1), g(ω, y2)) 6 dY (y1, y2)(1 + dX(g(ω, y1), g(ω, y2)))

for all ω ∈ Ω and all y1, y2 ∈ Y .

Proof. See [29, Theorem 1 and Corollary 1.1 on pages 134–135].

8If Y is not separable, this might fail; [2] refers to [15] for a counterexample.

9It is to be tacitly understood that dX and dY generate the topologies in X and Y , respectively, and
that the metric spaces (X, dX) and (Y, dY ) are complete.
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Proposition 2.19 (Measurable Selection Theorem). Suppose that X is a Polish space

and let D : Ω → 2X\{∅} be a multifunction such that D(ω) is closed for each ω ∈ Ω.

Then D is a (closed ) random set if, and only if there exists a sequence (vn)n∈N of

measurable maps Ω→ X such that

vn ∈ D , ∀n ∈ N ,

and

D(ω) = {vn(ω) ; n ∈ N} , ∀ω ∈ Ω .

In particular, any closed random set D : Ω→ 2X\{∅} has a measurable selection—that

is, a measurable map v : Ω→ X such that v(ω) ∈ D(ω) for each ω ∈ Ω.

Proof. (⇒) Suppose D is a closed random set. By Proposition 2.18, there exist a Polish

space Y and a Carathéodory map g : Ω × Y → X such that (Y, g) represents D. Let

(yn)n∈N be any dense sequence in Y . It then follows from continuity with respect to

the second variable that

D(ω) = g(ω, Y ) = {g(ω, yn) ; n ∈ N} , ∀ω ∈ Ω .

Since ω 7→ g(·, yn), ω ∈ Ω, is measurable for each n ∈ N, the result then follows with

vn := g(·, yn), n ∈ N.

(⇐) Now suppose that (vn)n∈N is a sequence of measurable maps Ω→ X such that

D(ω) = {vn(ω) ; n ∈ N} , ∀ω ∈ Ω .

Fix arbitrarily an open subset U of X. Then

{ω ∈ Ω ; D(ω) ∩ U 6= ∅} = {ω ∈ Ω ; {vn(ω) ; n ∈ N} ∩ U 6= ∅}

=
⋃
n∈N
{ω ∈ Ω ; vn(ω) ∈ U} ,

which is the countable union of F-measurable subsets of Ω. Since U open in X was

chosen arbitrarily, this shows D is measurable.

For the second conclusion of the proposition, we may simply take v to be any of the

vn’s.
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2.2.2 Universally Measurable Sets

Given a measurable space (Ω,F) and a probability measure ν on this space, we denote

by F̄ν the completion of F with respect to ν (or the ν-completion of F)—that is, the

σ-algebra consisting of all subsets A ⊆ Ω such that B ⊆ A ⊆ C for some B,C ∈ F with

ν(B) = ν(C). Denote by N(Ω,F) the collection of all probability measures on (Ω,F).

Definition 2.20 (Universal σ-Algebra). The universal σ-algebra of a measurable space

(Ω,F) is defined to be the σ-algebra

Fu :=
⋂

ν∈N(Ω,F)

F̄ν

of subsets of Ω. The sets in Fu are called the universally measurable sets associated

with (Ω,F). 4

Since F ⊆ F̄ν for any ν ∈ N(Ω,F), it follows straight from the definition that F ⊆ Fu.

Furthermore, we have Fu ⊆ F whenever (Ω,F , ν) is a complete probability space for

some probability measure ν on (Ω,F). So, in this case, we have indeed Fu = F .

Proposition 2.21 (Measurable Projection Theorem). Let X be a Polish space, and

let (Ω,F) be a measurable space. If M ⊆ Ω × X is (F ⊗ B(X))-measurable, then the

projection

projΩM := {ω ∈ Ω ; (ω, x) ∈M for some x ∈ X}

is universally measurable; that is, projΩM ∈ Fu. In particular, if (Ω,F , ν) is complete

for some probability measure ν, then projΩM is F-measurable.

Proof. See [11, Proposition 8.4.4 on page 281].

2.2.3 Tempered Random Sets

In what follows we suppose given an MPDS θ = (Ω,F ,P, (θt)t∈T ).

Definition 2.22 (Real-Valued Tempered Random Variables). A real-valued function

r : Ω → R is said to be a tempered random variable (with respect to the underlying

MPDS θ ) if it is Borel-measurable, and, for every γ > 0,

sup
s∈T
|r(θsω)| e−γ|s| <∞ , ∀̃ω ∈ Ω . (2.15)



28

We denote the family of real-valued, tempered random variables (with respect to the

MPDS θ) by RΩ
θ . 4

Equation (2.15) is equivalent to

|r(θsω)| 6 Kγ,ω eγ|s| , ∀s ∈ T , ∀̃ω ∈ Ω ,

for constantsKγ,ω > 0 depending on γ > 0 and ω ∈ Ω. Thus tempered random variables

can also be interpreted simply as random variables with sub-exponential growth along

θ-almost every orbit of θ.

Remark 2.23. (1) Any Borel-measurable function which is bounded along θ-almost

every orbit of θ is tempered. In particular, any θ-almost everywhere constant random

variable is tempered.

(2) If r1 ∈ RΩ
θ and |r2(ω)| 6 |r1(ω)| for θ-almost every ω ∈ Ω, then r2 is also

tempered.

(3) A θ-invariant subset Ω̃ ⊆ Ω of full measure on which (2.15) holds can be chosen

to be the same for every γ > 0. Indeed, let (γk)k∈N be a sequence convergent to zero

from above. For each k ∈ N, let Ω̃k ⊆ Ω be a θ-invariant subset of full measure such

that (2.15) holds for every ω ∈ Ω̃k with γ = γk. Observe that

sup
s∈T
|r(θsω)| e−δ|s| 6 sup

s∈T
|r(θsω)| e−γ|s|

whenever 0 < γ < δ. Thus

Ω̃ :=
∞⋂
k=1

Ω̃k

is a θ-invariant subset of full measure on which (2.15) holds for every γ > 0.

(4) We do not require the bound in Definition 2.22 to be independent of ω ∈ Ω. In

fact, if this were the case, then r would have been essentially bounded. For suppose

that, for some γ > 0, there exists a Kγ > 0 such that

sup
s∈T
|r(θsω)| e−γ|s| 6 Kγ , ∀̃ω ∈ Ω .

Then

|r(ω)| 6 sup
s∈T
|r(θsω)| e−γ|s| 6 Kγ , ∀̃ω ∈ Ω ,

showing that r is essentially bounded. �
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Lemma 2.24. For any r1, r2 ∈ RΩ
θ , r1+r2 and r1r2 are also tempered random variables.

In particular, RΩ
θ is a commutative ring with the operations of pointwise addition and

multiplication.

Proof. Let Ω̃ be a θ-invariant subset of full measure of Ω over which (2.15) holds for

both r1 and r2, for any γ > 0 (see Remark 2.23(3) above). Fix any such γ arbitrarily.

Then

sup
s∈T
|(r1 + r2)(θsω)|e−γ|s| 6 sup

s∈T
|r1(θsω)|e−γ|s| + sup

s∈T
|r2(θsω)|e−γ|s|

< ∞ , ∀ω ∈ Ω̃ .

Since γ > 0 was chosen arbitrarily, this shows that r1 + r2 is tempered.

Similarly, for any γ > 0,

sup
s∈T
|r1(θsω)r2(θsω)|e−γ|s| = sup

s∈T
|r1(θsω)|e−

γ
2
|s||r2(θsω)|e−

γ
2
|s|

6

(
sup
s∈T
|r1(θsω)|e−

γ
2
|s|
)(

sup
s∈T
|r2(θsω)|e−

γ
2
|s|
)

< ∞ , ∀ω ∈ Ω̃ .

This shows that r1r2 is also tempered.

Corollary 2.25. For any r1, r2 ∈ (R)Ω
θ , the random variables r1 ∧ r2 : Ω → R and

r1 ∨ r2 : Ω→ R defined, respectively, by

(r1 ∧ r2)(ω) := min{r1(ω), r2(ω)} , ω ∈ Ω ,

and

(r1 ∨ r2)(ω) := max{r1(ω), r2(ω)} , ω ∈ Ω ,

are tempered.

Proof. Indeed,

r1 ∧ r2 =
r1 + r2

2
− |r1 − r2|

2

and

r1 ∨ r2 =
r1 + r2

2
+
|r1 − r2|

2
.

Now it follows from Remark 2.23(2) and Lemma 2.24 that |r1− r2| is tempered. Hence

r1 ∧ r2 and r1 ∨ r2 are also tempered by the same lemma.
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Definition 2.26 (Tempered Random Sets). Let (X, d) be a metric space. A random

set D : Ω → 2X is said to be tempered (with respect to θ ) if there exist x0 ∈ X and a

nonnegative tempered random variable r : Ω→ R>0 such that

D(ω) ⊆ Br(ω)(x0) , ∀̃ω ∈ Ω . (2.16)

A Borel-measurable map v : Ω → X is said to be a tempered random variable (with

respect to θ ) if the random singleton defined by ω 7→ {v(ω)}, ω ∈ Ω, is a tempered

random set.

We denote the family of tempered random sets (with respect to θ) by (2X)Ω
θ , and

the family of tempered random variables (with respect to θ) is denoted by XΩ
θ . 4

Example 2.27 (Tempered Random Balls). Let (X, d) be a metric space. If

a : Ω −→ X and r : Ω→ R>0

are tempered random variables, then

B(·) := Br(·)(a(·)) : Ω −→ 2X\{∅}

is a tempered random set.

It was shown in Example 2.14 that B is a random set, so it remains to show that it

is tempered. Let x0 ∈ X and r0 be a nonnegative tempered random variable such that

{a(ω)} ⊆ Br0(ω)(x0) , ∀̃ω ∈ Ω ;

in other words,

d(a(ω), x0) 6 r0(ω) , ∀̃ω ∈ Ω .

Then

d(x, x0) 6 d(x, a(ω)) + d(a(ω), x0) 6 r(ω) + r0(ω) , ∀x ∈ B(ω) , ∀̃ω ∈ Ω ;

in other terms,

B(ω) ⊆ B(r+r0)(ω)(x0) , ∀̃ω ∈ Ω .

Since r + r0 is tempered by Lemma 2.24, we conclude that B is tempered.
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The same construction and estimates show that the closed random ball

B(·) := Br(·)(a(·))

is also tempered, provided that its center a and its radius r are also tempered. ♦

Remark 2.28. (1) Note that if there exist x0 ∈ X and a nonnegative tempered random

variable r such that (2.16) holds, then for every x ∈ X, there exists a nonnegative

random variable rx such that (2.16) holds with x and rx in place of x0 and r, respectively.

Indeed, one can simply take rx(·) := r(·)+d(x0, x). This is particularly convenient when

the underlying metric space is a normed vector space, in which case we may always

choose the reference point to be 0.

(2) Definitions 2.22 and 2.26 agree for random variables when X = R. Indeed, if r

is tempered in the sense of Definition 2.22, then it can be seen to be also tempered in

the sense of Definition 2.26 with x0 = 0. Conversely, if r is tempered in the sense of

Definition 2.26, then

|r(ω)| 6 |r(ω)− x0|+ |x0| 6 r0(ω) + |x0| , ∀̃ω ∈ Ω ,

for some x0 ∈ R and some nonnegative tempered random variable r0 (in the sense of

Definition 2.22). Thus it follows by Lemma 2.24 and Remark 2.23(2) that r is also

tempered in the sense of Definition 2.22. �

Most of the time the underlying MPDS θ will be clear from the context. Therefore we

shall say simply ‘tempered’ to mean ‘tempered with respect to θ,’ unless there is any

risk of confusion.

Lemma 2.29. Let (X, d) be a metric space. If D,E : Ω → 2X are tempered random

sets, then their union D ∪ E is also a tempered random set.

Proof. It follows from Lemma 2.13 that D∪E is measurable. Now let r, s ∈ (R>0)Ω
θ be

tempered random variables such that

D ⊆ Br(0) and E ⊆ Bs(0) .

Therefore

D ∪ E ⊆ Br∨s(0) .
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It follows from Corollary 2.25 that r∨s is tempered, showing that D∪E is tempered.

It is also worth noting that the concept of temperedness is independent of the

norm in finite-dimensional spaces. Thus the analysis in each of the finite-dimensional

examples we shall discuss in the next chapter remains valid regardless of the underlying

norm. We parse this into the following two results.

Lemma 2.30. Suppose that (X, ‖ · ‖) is a real normed space. Then a random variable

R : Ω→ X is tempered if, and only if ‖R(·)‖ : Ω→ R>0 is a tempered random variable.

Proof. This is a rehash of Remark 2.28(1) for normed spaces.

Lemma 2.31. Suppose that (X, ‖ · ‖) is a finite-dimensional, real normed space. Then

R is a tempered random variable if, and only if R is tempered with respect to any

norm ‖ · ‖∗ : X → R>0; in other words, temperedness is independent of the norm in

finite-dimensional spaces.

Proof. Since all norms in a finite dimensional space are equivalent, they all generate the

same topology. Therefore measurability does not depend on the norm. Furthermore,

if ‖ · ‖∗ 6 β‖ · ‖ for some β > 0 and ‖R‖ is tempered, then ‖R‖∗ is also tempered. It

follows from Lemma 2.30 that R is tempered with respect to any norm in X.

The next result generalizes Lemma 2.24.

Lemma 2.32. Suppose that (X, ‖ · ‖) is a real normed space. Then R1 + R2 and rR1

are tempered random variables Ω → X for any R1, R2 ∈ XΩ
θ and any r ∈ RΩ

θ . In

particular, XΩ
θ is a module over the ring of real-valued tempered random variables.

Proof. Since ‖R1 +R2‖ 6 ‖R1‖+‖R2‖ and ‖rR1‖ = |r|‖R1‖, this follows straight from

Lemma 2.24, plus Corollary 2.30.

Temperedness often implies other useful properties. The results below will allow us

to avoid making redundant assumptions without having to digress into proving that

such extra hypotheses are actually not needed.
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Lemma 2.33. If b : Ω→ R is a tempered random variable, then

t 7−→ b(θtω) , t ∈ R ,

is locally essentially bounded for θ-almost all ω ∈ Ω. In particular,

b(θ·ω) : R −→ R

is locally integrable for θ-almost all ω ∈ Ω.

Proof. It follows from Corollary C.9 that t 7→ b(θtω), t ∈ R, is Borel-measurable for

each ω ∈ Ω. Now let Ω̃1 be the set of all ω ∈ Ω such that

K1,ω := sup
s∈R

b(θsω) e−|s| <∞ .

Because b is assumed to be tempered, Ω̃1 can be chosen to be a θ-invariant subset of

full measure of Ω. Fix arbitrarily ω ∈ Ω̃1. For each finite interval [α, β] ⊆ R, we have

0 6 b(θtω) 6 K1,ω max{e|α|, e|β|} , α 6 t 6 β .

So t 7→ b(θtω), t ∈ R, is locally bounded—and thus locally integrable.

2.3 Partially Ordered Spaces

Definition 2.34 (Partially Ordered Topological Spaces). A partial ordered topological

space is an ordered pair (X,6) in which X is a topological space and 6 is a closed

partial order (in the product space X ×X); that is,

(1) x 6 x for every x ∈ X (6 is reflexive),

(2) x 6 y and y 6 x imply x = y (6 is antisymmetric),

(3) x 6 y and y 6 z imply x 6 z (6 is transitive), and

(4) if (xα)α∈A and (yα)α∈A are nets in X convergent to x∞, y∞, respectively, and

xα 6 yα for every α ∈ A, then x∞ 6 y∞ (6 is closed in X ×X). 4
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In this work we shall deal exclusively with partially ordered sets which are also equipped

with a topology which is compatible with the partial order in the sense of (4) in the

above definition. Therefore we will often refer to partially ordered topological spaces

simply as partially ordered spaces.

Definition 2.35 (Intervals and Extremes). Let X be a partially ordered topological

space.

(1) For any a, b ∈ X, the order-interval [a, b] is defined by

[a, b] := {x ∈ X ; a 6 x 6 b} .

We will often refer to these as simply intervals.

(2) An element v ∈ X is said to be an upper (lower ) bound of a subset B ⊆ X if

x 6 v (x > v) for every x ∈ B.

(3) An upper (lower) bound v0 ∈ X of a subset B ⊆ X is said to be the10 supremum

(infimum), denoted supB (inf B), if any other upper (lower) bound satisfies v > v0

(v 6 v0). The supremum (infimum) is also referred to as the least upper bound

(greatest lower bound ).

(4) An element v ∈ B ⊆ X is said to be maximal (minimal ) in B if x > v (x 6 v)

for some x ∈ B implies x = v.

(5) A subset B ⊆ X is said to be order-bounded if B ⊆ [a, b] for some a, b ∈ X; in

other terms, if it is contained in some order-interval. 4

Remark 2.36. (1) Simple examples in R2 show that supB or inf B, even if they exist,

need not be in the closure B of B in X. (See cone-induced partial orders below. See

also Lemma 2.38.)

(2) When the supremum (infimum) of B exists and belongs to B, it is a maximal

(minimal) element of the set.

10Provided existence, uniqueness of the supremum (infimum) follows from the antissymmetric prop-
erty of 6.



35

(3) A maximal (minimal) element need not be an upper (lower) bound. Indeed, the

definition of maximal (minimal) element does not require that the element be related

to every other member of the set. �

Lemma 2.37. Let A,B be subsets of a partially ordered topological space (X,6). If

supA and supB exist, and if for every a ∈ A there exists an element b ∈ B such that

a 6 b, then supA 6 supB. The same is true if for every b ∈ B there exists an a ∈ A

such that a 6 b.

Similarly, if inf A and inf B exist, and if for every a ∈ A there exists an element

b ∈ B such that a 6 b, then inf A 6 inf B. The same is also true if for every b ∈ B

there exists an a ∈ A such that a 6 b.

Proof. Suppose inf A and inf B exist and that for every b ∈ B there exists an a ∈ A

such that a 6 b. We have inf A 6 a 6 b. So indeed inf A 6 b for every b ∈ B. This

proves inf A 6 inf B.

All other cases can be proved using the exact same argument.

Lemma 2.38. Let B be a subset of a partially ordered topological space (X,6). Then

supB exists if, and only if supB exists. In this case, supB = supB. Analogously,

inf B exists if, and only if inf B exists, in which case inf B = inf B.

Proof. Suppose supB exists. Given any x ∈ B, let (xα)α∈A be a net in B converging

to x. We have

xα 6 supB , ∀α ∈ A ,

hence x 6 supB by Definition 2.34(4). So supB is an upper bound for B. Now let

v ∈ X be any upper bound of B. Then v is an upper bound of B, so v > supB. This

shows that supB is the least upper bound of B. In other words, supB exists and is

equal to supB.

Conversely, if supB exists, then it is clearly an upper bound for B. Now any upper

bound of B is also an upper bound of B by the argument above. Thus supB is the

least upper bound of B as well.

The proof for inf’s is entirely analogous.
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2.3.1 Partially Ordered Vector Spaces

The core of our theory will be developed on subsets of separable, real Banach spaces.

In those cases, the underlying partial order will be usually what we call a cone-induced

order.

Definition 2.39 (Cone). Let V be a real topological vector space. A cone in V is a

subset V+ ⊆ V such that

(1) V+ is closed,

(2) V+ + V+ ⊆ V+,

(3) αV+ ⊆ V+ for every α > 0, and

(4) V+ ∩ (−V+) = {0}. 4

Definition 2.40 (Cone-Induced Partial Order). Given a subset X of real topological

vector space V and a cone V+ ⊆ V , the binary relation 6V+ on X defined by

x 6V+ y ⇐⇒ y − x ∈ V+

is a partial order with closed diagonal

{(x, y) ∈ X ×X ; x 6V+ y} ,

called the partial order in X induced by V+.

As usual, we write x <V+ y when x 6V+ y and x 6= y. Naturally, x >V+ y means

that y 6V+ and x >V+ y means that y <V+ x. If intV+ 6= ∅, then we write x�V+ y or

y �V+ x whenever y − x ∈ intV+. 4

Whenever the underlying cone is clear from the context we shall drop the index ‘V+’

in ‘6V+ ’ and write just ‘6.’ The same convention applies to ‘<V+ ,’ ‘�V+ ,’ ‘>V+ ,’ ‘>V+ ,’

and ‘�V+ .’

The subset X ⊆ V in Definition 2.40 will often be taken to be V itself, V+ or intV+—

when it is nonempty. In any case, it will always be a Borel subset of V . However we

seem to neither lose anything from making the definition as general as we did, nor to

gain anything from making it more specific.
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Definition 2.41 (Solid and Minihedral Cones). Let V+ ⊆ V be a cone in a real

topological vector space V .

(1) If the interior intV+ of V+ is nonempty, then V+ is said to be a solid cone. In

this case, any subset X ⊆ V is said to be strongly ordered by V+. We then write

x� y (or y � x) if y − x ∈ intV+.

(2) If every order-bounded, finite subset M = {v1, . . . , vk} ⊆ V has a supremum (not

necessarily in M), then V+ is said to be minihedral. If every order-bounded subset

M ⊆ V has a supremum, then V+ is said to be strongly minihedral. 4

Definition 2.42 (Normal and Regular Cones). Let V+ ⊆ V be a cone in a real normed

vector space V .

(1) V+ is said to be normal if there exists a constant CV > 0 such that 0 6 x 6 y

implies ‖x‖ 6 CV ‖y‖.

(2) V+ is said to be regular if every order-bounded monotone sequence converges in

norm; that is,

x1 6 x2 6 x3 6 · · · 6 xn 6 · · · 6 u

for some u ∈ V implies that the sequence (xn)n∈N converges in norm to some

x∞ ∈ V . 4

We follow up with a review of several results concerning normed spaces partially

ordered by cones having one or more of the properties above. Proofs which are not

readily found in the standard literature are provided.

Lemma 2.43. Let V be a real normed space, partially ordered by a solid cone V+ ⊆ V .

Then

(1) the order interval [−u, u] has nonempty interior for any u ∈ intV+; in particular,

there exists u� 0 such that [−u, u] contains the unit ball.

(2) V+ = intV+; in other words, a solid cone is the closure of its interior.
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Proof. (1) Pick any u � 0 and let δ > 0 be such that Bδ(u) ⊆ V+. We show that

Bδ(0) ⊆ [−u, u]. Indeed, Bδ(u) ⊆ V+ is equivalent to

u+ x > 0 , ∀x ∈ Bδ(0) .

Thus

−x 6 u , ∀x ∈ Bδ(0) ,

and

x > −u , ∀x ∈ Bδ(0) .

This amounts to

− u 6 x 6 u , ∀x ∈ Bδ(0) , (2.17)

verifying the claim.

To prove the second part, multiply each term in (2.17) by 1/δ. This shows that

B1(0) ⊆ [−(1/δ)u, (1/δ)u], where B1((1/δ)u) ⊆ V+, and so (1/δ)u ∈ intV+. This

establishes (1).

(2) The inclusion intV+ ⊆ V+ is just a topological fact, since V+ is closed and

intV+ ⊆ V+. To prove the reciprocal inclusion, pick any v > 0, any u � 0, and let

un := u/n, n ∈ N. In particular, un � 0 for each n ∈ N, and un → 0 as n→∞. Hence

v + un � 0 for each n ∈ N and v + un → v as n→∞. This shows that v ∈ intV+.

Lemma 2.44. Suppose that (xα)α∈A is a net in a normed space X, partially ordered

by a solid, normal cone X+ ⊆ X. Suppose, in addition, that the net converges to an

element x∞ ∈ X, and that the infima and suprema

x−α := inf{xα′ ; α′ > α}

and

x+
α := sup{xα′ ; α′ > α}

exist for every α ∈ A. Then the nets (x−α )α∈A and (x+
α )α∈A so defined also converge to

x∞.
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Proof. Fix arbitrarily x0 ∈ intX+. Then rx0 ∈ intX+ for every scalar r > 0, and so

the order interval [−rx0, rx0] is a neighborhood of the origin by Lemma 2.43. It then

follows that [x∞ − rx0, x∞ + rx0] is a neighborhood of the limit x∞ for each r > 0.

Thus from the hypothesis of convergence, for every r > 0, there exists an αr ∈ A such

that

xα ∈ [x∞ − rx0, x∞ + rx0] , ∀α > αr .

Now

x−α = inf{xα′ ; α′ > α} > x∞ − rx0 , ∀α > αr , ∀r > 0 ,

and, similarly,

x+
α = sup{xα′ ; α′ > α} 6 x∞ + rx0 , ∀α > αr , ∀r > 0 ;

that is,

x∞ − rx0 6 x
−
α 6 x

+
α 6 x∞ + rx0 , ∀α > αr , ∀r > 0 .

Let CX+ > 0 be the normality constant of X+. Then

‖x−α − x∞‖ 6 ‖x−α − (x∞ − rx0)‖+ ‖rx0‖

6 CX+‖(x∞ + rx0)− (x∞ − rx0)‖+ ‖rx0‖

= (2CX+ + 1)‖x0‖r ,

for every α > αr and any r > 0. Since

(2CX+ + 1)‖x0‖r −→ 0 as r → 0 ,

we conclude that ‖x−α −x∞‖ → 0 as α→∞. The proof that ‖x+
α −x∞‖ → 0 as α→∞

as well is entirely analogous.

The hypothesis that the cone be solid is not necessary, as illustrated in Remark 2.45

below. Nevertheless, the conclusion of Lemma 2.44 may still fail if it is not satisfied (see

Remark 2.46). We do not know the extent to which normality is a necessary condition

for the conclusions of the lemma to hold.
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Remark 2.45. The hypothesis that the cone be solid is not necessary. Let X := R2

and X+ := R>0 × {0}, and let (xα, yα)α∈A be a net in X which is convergent in the

Euclidean norm to an (x∞, y∞) ∈ X, and such that

(x−α , y
−
α ) := inf

α′>α
(xα′ , yα′) and (x+

α , y
+
α ) := sup

α′>α
(xα′ , yα′)

are well-defined for each α ∈ A.

We first note that yα1 = yα2 for any α1, α2 ∈ A. Indeed, let β ∈ A be such that

α1, α2 6 β. We have

(x−α1
, y−α1

) 6 (xα′ , yα′) , ∀α′ > α1 ,

therefore

xα′ > x
−
α1

and yα′ = y−α1
, ∀α′ > α1 .

Similarly,

yα′ = y−α2
, ∀α′ > α2 , and yα′ = y−β , ∀α′ > β .

Putting these together we obtain

yβ = y−β = y−α1
= y−α2

= yα1 = yα2 .

Now

yα = y∞ , ∀α ∈ A ,

and so, indeed,

(x−α , y
−
α ) =

(
inf
α′>α

xα′ , y∞

)
and (x+

α , y
+
α ) =

(
sup
α′>α

xα′ , y∞

)
, ∀α ∈ A .

From the hypothesis that xα → x∞, it follows—from Lemma 2.44 with X := R and

X+ := R>0, if you must—that

x−α −→ x∞ and x+
α −→ x∞ ,

from which

(x−α , y
−
α ) −→ (x∞, y∞) and (x+

α , y
+
α ) −→ (x∞, y∞) ,

then immediately follows. �
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Remark 2.46. The conclusion of Lemma 2.44 may fail if the cone is not solid. Consider,

for instance, the normed space L1([0, 1],R) of real-valued, Lebesgue-integrable functions

on [0, 1], equipped with the partial order induced by the cone of nonnegative functions

L1
>0([0, 1],R). This is a normal cone (the normality constant is 1) which is not solid

(given an arbitrary f ∈ L1
>0([0, 1],R), it is not difficult to construct a sequence (fn)n∈N

in L1([0, 1],R)\L1
>0([0, 1],R) such that ‖fn − f‖L1([0,1],R) → 0 as n → ∞). We will

construct a sequence (fn)n∈N in L1([0, 1],R) satisfying the hypotheses of Lemma 2.44

for which the conclusion does not hold.

For each k ∈ Z>0, let

Nk :=
k∑
j=0

j .

Define fn : [0, 1]→ R by

fn(x) := χ[ j−1
k
, j
k ](x) , x ∈ [0, 1] ,

for each n = Nk−1 + j, where j ranges over {1, . . . , k} and k runs through the positive

integers. Then

sup
n>n0

fn(x) = 1 , ∀x ∈ [0, 1] , ∀n0 ∈ N ,

even though fn → 0 as n→∞. Indeed,

‖fn‖L1([0,1],R) 6
1

k

for every n > Nk−1 + 1, for each positive integer k. �

Proposition 2.47. Suppose that V is a real Banach space, partially ordered by a solid,

normal, minihedral cone V+ ⊆ V . Then every precompact subset B ⊆ V has a supre-

mum and an infimum.

Proof. For compact subsets B ⊆ V , see [34, Theorem 6.5, page 62]. It follows for

precompact sets in view of Lemma 2.38: if B is precompact, then B is compact and so

supB = supB and inf B = inf B by the lemma.

Corollary 2.48. If V is a finite-dimensional, real normed space, partially ordered by

a solid, normal, minihedral cone V+ ⊆ V , then every bounded subset B ⊆ V has a

supremum and an infimum.
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Proof. Every finite-dimensional, real normed space is automatically complete (Banach).

Moreover, every bounded subset is precompact.

Proposition 2.47 and its corollary—or, more precisely, their extension to random

sets in Subsection 2.3.2 below—are a key tool in this work. Therefore it is convenient

to have a shorthand terminology to refer to Banach spaces which are partially ordered

by a solid, normal and minihedral cone.

Definition 2.49 (RTA Spaces). For brevity, we shall refer to a real Banach space V ,

partially ordered by a solid, normal, minihedral cone V+ ⊆ V , as an RTA space. 4

Definition 2.50 (Shell). For any compact subset K of an RTA space, the set

shell(K) := {supE ; E is a precompact subset of K}

will be referred to as the shell of K. 4

Proposition 2.47 guarantees that the shell of a compact subset of an RTA space is

well-defined.

Theorem 2.51 (Compact Shells). The shell of a compact subset of an RTA space is

compact.

Proof. Let X be an arbitrary compact subset of an arbitrary RTA space V . By Lemma

2.38, we then have

shell(X) = {supE ; E ∈ F (X)} .

Now (F (X), dH) is a compact metric space by Proposition A.5, and shell(X) is the

image of F (X) under the map

E 7−→ supE . E ∈ F (X) , (2.18)

Therefore it suffices to show that this map is continuous.

Since the cone V+ is solid, we may choose an u in the interior of V+ such that the

order interval

[−u, u] := {x ∈ V ; −u 6 x 6 u}
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contains the unit ball B1(0). Below we will denote the normality constant of V+ by K.

Fix arbitrarily δ > 0 and A,C ∈ F (X) such that dH(A,C) < δ. By Proposition

A.1, we have

A ⊆ Cδ = C +Bε(0) ⊆ C + [−δu, δu] ,

hence

supA 6 supC + δu .

Likewise,

supC 6 supA+ δu .

Combining these two inequalities, we obtain

−δu 6 supA− supC 6 δu ,

so that

0 6 supA− supC + δu 6 2δu .

Now, by normality,

‖ supA− supC‖ 6 ‖ supA− supC + δu‖+ δ‖u‖

6 (2K + 1)‖u‖δ .

This shows that (2.18) is uniformly continuous on F (X), thus completing the proof.

2.3.2 Random Sets in Partially Ordered Spaces

The results below were proven in Chueshov [8]. We restate them here using our notation

mostly for ease of reference. However mild generalizations are provided in a few of these

results.

Suppose that (X,6) is a partially ordered space. For any a, b ∈ XΩ
B , we write a 6 b

to mean that a(ω) 6 b(ω) for θ-almost all ω ∈ Ω. Similarly, for any p, q ∈ SXθ , we

write p 6 q to mean that p(t, ω) 6 q(t, ω) for all t > 0, for θ-almost all ω ∈ Ω. Taking

into account the identification of θ-almost everywhere equal maps discussed in Section

2.1.1, this convention induces partial orders in XΩ
B and SXθ .
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Proposition 2.52. Suppose that a, b : Ω → V are random variables in a real normed

space V , partially ordered by a cone V+ ⊆ V . Then the multivalued map [a, b] : Ω→ 2X ,

defined by

[a, b](ω) := [a(ω), b(ω)] , ω ∈ Ω ,

is a random closed set provided that at least one of the three conditions below is satisfied.

(1) V+ is solid and a� b.

(2) V+ is solid, normal and minihedral, and a 6 b.

(3) V is finite-dimensional and a 6 b.

Proof. See [8, Proposition 3.2.1, page 88].

Proposition 2.53. Suppose that V+ ⊆ V is a solid, normal cone. Then a random

set D ∈ (2X)Ω
B is bounded (tempered ) if, and only if there exists a random (tempered

random ) variable v : Ω→ intV+ such that

D(ω) ⊆ [−v(ω), v(ω)] , ∀ω ∈ Ω .

Proof. See [8, Proposition 3.2.2, page 89].

Theorem 2.54 (Suprema and Infima of Random Sets). Suppose that V is a separable,

real Banach space, partially ordered by a solid, normal, minihedral cone V+ ⊆ V . If

D ∈ (2X)Ω
B is a precompact random set, then supD, inf D : Ω→ V are random variables

in V . Moreover, if D is tempered, then supD and inf D are also tempered.

Proof. For compact random sets, see Chueshov [8, Theorem 3.2.1, page 90]. From

Theorem 2.47, supD and inf D are well-defined. From Proposition 2.12, D is a compact

random set. From Lemma 2.38, supD = supD and inf D = inf D, which are then Borel-

measurable. For the second statement, observe that temperedness of random sets is

preserved by closure.

Corollary 2.55. If V is a finite-dimensional, real normed space, partially ordered by

a solid, normal, minihedral cone V+ ⊆ V , then supD and inf D are random variables
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for every bounded random set D ∈ (2X)Ω
B . In particular, supD and inf D are tempered

random variables for every tempered random set D ∈ (2X)Ω
θ .

Proof. Finite-dimensional, real normed spaces are automatically separable and com-

plete, so the hypotheses of Theorem 2.54 are satisfied. Moreover, bounded sets are

precompact in finite-dimensional normed spaces.

For the second statement, we need only observe that tempered random sets are

bounded (random sets).

2.4 Asymptotic Behavior Concepts

In this work asymptotic behavior is studied in the “pullback” sense.

Definition 2.56 (Pullback). The pullback of a θ-stochastic process ξ ∈ SXθ is the

θ-stochastic process11 ξ̌ ∈ SXθ defined by

ξ̌t(ω) := ξt(θ−tω) , (t, ω) ∈ T>0 × Ω .

If emphasis or contrast is needed, we shall refer to the original θ-stochastic process ξ

as the forward one. 4

Intuitively, in the forward θ-stochastic process one keeps seeing random dynamical

fluctuations along the way, while its pullback gives “photographs” of what the “present”

state would look like if it had started to evolve a long time ago [14]. We shall always use

the check mark ˇ to indicate the pullback of the θ-stochastic process being accented.

Note that, while the concepts of random variable and θ-stochastic process defined at the

beginning of Subsection 2.1.2 do not depend explicitly on the measurable flow (θt)t∈T

component of the underlying MPDS θ, the concept of pullback does.

In the context of random dynamical systems, pullback trajectories seem to be the

mathematically natural object to study, as we will discuss in more detail later on, after

we formally introduce RDS in Definition 3.1. We can advance that it follows from the

measure-preserving property that

P(ξt ∈ A) = P(θt[ξt ∈ A]) = P(ξ̌t ∈ A) , ∀t > 0 , ∀A ∈ F . (2.19)

11ξ̌ is indeed a θ-stochastic process by Lemma C.10.
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Thus, at least as far as practical matters are concerned, the asymptotic behavior of

forward and pullback trajectories are equivalent in the sense of probability.

Definition 2.57 (Tail). The tail (from moment τ) of the pullback trajectories of a

θ-stochastic process ξ ∈ SXθ is the multifunction βτξ : Ω→ 2X\{∅}, defined by

βτξ (ω) := {ξt(θ−tω) ; t > τ} , ω ∈ Ω ,

for each τ > 0. 4

Lemma 2.58. If (X, d) is a Polish space and (Ω,F ,P) is complete, then βτξ is a random

set for each τ > 0, for any θ-stochastic process ξ ∈ SXθ .

Proof. Fix ξ ∈ SXθ , τ > 0 and x ∈ X arbitrarily. We will show that

ω 7−→ dist(x, βτξ (ω)) , ω ∈ Ω , (2.20)

is measurable. Let g : T>0 × Ω→ R>0 be the map defined by

g(t, ω) := d(x, ξt(θ−tω)) , (t, ω) ∈ T>0 × Ω .

As a composition of measurable functions, g is measurable. It follows straight from the

definition of the tails of the pullback trajectories of ξ that

dist(x, βτξ (ω)) = inf
t>τ

g(x, ω) , ∀ω ∈ Ω .

Fix a > 0 arbitrarily. Then

Ea := {ω ∈ Ω ; dist(x, βτξ (ω)) < a}

= {ω ∈ Ω ; inf
t>τ

g(t, ω) < a}

= projΩ{(t, ω) ∈ T>0 × Ω ; g(t, ω) < a and t > τ}

= projΩ
(
g−1([0, a)) ∩ [τ,∞)× Ω

)
.

From the assumptions that (X, d) is a Polish space and (Ω,F ,P) is complete, it follows

by Proposition 2.21 that Ea is F-measurable. Since a > 0 was chosen arbitrarily, this

shows that map defined in (2.20) is measurable. Since X is separable and x ∈ X was

also chosen arbitrarily, it follows from Proposition 2.15 that βτξ is a random set. Finally,

ξ ∈ SXθ and τ > 0 were chosen arbitrarily as well, therefore the argument above proves

the lemma.
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2.4.1 Tempered Convergence and Continuity

Definition 2.59 (Tempered Convergence). Suppose θ is an MPDS and (X, d) is a

metric space. We say that a net (ξα)α∈A in XΩ
B converges in the tempered sense to

a random variable ξ∞ ∈ XΩ
B if there exists a nonnegative, tempered random variable

r : Ω→ R>0 and an α0 ∈ A such that

(1) ξα(ω) −→ ξ∞(ω) as α→∞ for θ-almost all ω ∈ Ω, and

(2) d(ξα(ω), ξ∞(ω)) 6 r(ω) for all α > α0, for θ-almost all ω ∈ Ω.

In this case we write ξα →θ ξ∞ (as α→∞). 4

Definition 2.60 (Tempered Continuity). Suppose θ is an MPDS and X,U are metric

spaces. A map K : U ⊆ UΩ
B → XΩ

B is said to be tempered continuous if K(uα)→θ K(u∞)

for every net (uα)α∈A in U such that uα →θ u∞ for some u∞ ∈ U . 4

2.4.2 Tempered and Eventually Precompact Trajectories

Definition 2.61 (Eventually Precompact Trajectories). We say that a θ-stochastic

process ξ ∈ SXθ is eventually precompact if there exists a τξ > 0 such that β
τξ
ξ (ω) is

precompact for θ-almost all ω ∈ Ω. We denote the subset of all eventually precompact

θ-stochastic processes ξ ∈ SXθ by KXθ . 4

Note that βτ1ξ (ω) ⊆ βτ2ξ (ω) whenever τ1 > τ2. So, in this definition, it is indeed true

that βτξ (ω) is precompact for every τ > τξ, for θ-almost every ω ∈ Ω.

Definition 2.62 (Tempered Trajectories). A θ-stochastic process ξ ∈ SXθ is said to be

tempered if there exists a nonempty, tempered random set D ∈ (2X)Ω
θ such that

β0
ξ (ω) ⊆ D(ω) , ∀̃ω ∈ Ω ; (2.21)

in other words,

ξ̌t(ω) = ξt(θ−tω) ∈ D(ω) , ∀t > 0 , ∀̃ω ∈ Ω . (2.22)

Any D ∈ (2X)Ω
θ for which the inclusions above hold is called a rest set. The subset of

all tempered θ-stochastic processes ξ ∈ SXθ is denoted by VXθ . 4
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Observe that, by virtue of θ-invariance, condition (2.22) is equivalent to

ξt(ω) ∈ D(θtω) , ∀t > 0 , ∀̃ω ∈ Ω .

Lemmas 2.63–2.65 below further motivate the concept of tempered θ-stochastic

processes just introduced. The idea is to have a term to talk about θ-stochastic processes

which, as far as their oscillatory behavior is concerned, look somewhat like a θ-stationary

process generated by a tempered random variable (Lemma 2.63). Since this pertains

to long-term behavior, this property should be preserved by shifting (Lemma 2.64) or

“concatenating” (Lemma 2.65) tempered θ-stochastic processes.

Lemma 2.63. If ξ : Ω → X is a tempered random variable, then the θ-stationary

process ξ̄ : T>0 × Ω→ X generated by ξ is a tempered θ-stochastic process.

Proof. Consider the random singleton D := {ξ}. Then

ξ̄t(θ−tω) = ξ(θtθ−tω) = ξ(ω) ∈ D(ω) , ∀t > 0 , ∀ω ∈ Ω .

Since ξ is tempered by hypothesis, D is also tempered, and so ξ̄ is tempered with rest

set D.

Lemma 2.64. If ξ : T>0 × Ω → X is a tempered θ-stochastic process, then the shift

ρs(ξ) is also tempered for any s > 0.

Proof. Let D be a rest set for ξ. Fix s > 0 arbitrarily. We have

[ρs(ξ)]t(θ−tω) = ξs+t(θ−(s+t)ω) ∈ D(ω) , ∀t > 0 , ∀̃ω ∈ Ω .

Thus D is also a rest set for ρs(ξ). Since s > 0 was chosen arbitrarily, this completes

the proof.

For each s > 0, we define an operator ♦s : SXθ × SXθ → SXθ as follows. Given

ξ, ζ ∈ SXθ , ξ♦sζ consists of the truncation of ξ at time s, “continued” by ζ from then

onwards. More precisely, we define u♦sv : T>0 × Ω→ X by

(ξ♦sζ)t(ω) =

 ξt(ω) , 0 6 t < s

ζt−s(θsω) , s 6 t
, (t, ω) ∈ T>0 × Ω .
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When Ω is a singleton, this construction reduces to the standard deterministic way of

concatenating paths.

Lemma 2.65. Let ξ, ζ : T>0×Ω→ X be tempered θ-stochastic processes. Then for any

s > 0, the concatenation ξ♦sζ is also tempered.

Proof. LetD,E ∈ (2X)Ω
θ be rest sets for ξ, ζ, respectively, and let Ω̃ ⊆ Ω be a θ-invariant

subset of full measure such that

ξt(θ−tω) ∈ D(ω) and ζt(θ−tω) ∈ E(ω) , ∀t > 0 , ∀ω ∈ Ω̃ .

Fix s > 0 arbitrarily. For any t ∈ [0, s), we have

(ξ♦sζ)t(θ−tω) = ξt(θ−tω) ∈ D(ω) , ∀ω ∈ Ω̃ .

Similarly, for any t ∈ [s,∞), we have

(ξ♦sζ)t(θ−tω) = ζt−s(θ−(t−s)ω) ∈ E(ω) , ∀ω ∈ Ω̃ .

This shows that

(ξ♦sζ)t(θ−tω) ∈ (D ∪ E)(ω) , ∀t > 0 , ∀ω ∈ Ω̃ .

Now D ∪ E is a tempered random set by Lemma 2.29, thus completing the proof.

Lemma 2.66. Let ξ : T>0×Ω→ X be a tempered θ-stochastic process in a real normed

space X. If X is finite-dimensional, then ξ is eventually precompact; in other terms,

VXθ ⊆ KXθ .

Proof. Indeed, let D be a rest set for ξ. In virtue of temperedness, D(ω) is, in particular,

bounded for θ-almost all ω ∈ Ω. Under the assumption that X is finite-dimensional,

each such bounded D(ω) is precompact. It follows from (2.21) that β0
ξ (ω) is precompact

for θ-almost all ω ∈ Ω, which means that ξ is eventually precompact (with τξ = 0).

Proposition 2.67. Suppose that (X, d) is a metric space. If ξ : T>0 × Ω → X is a

tempered θ-stochastic process and ξ∞ : Ω→ X is a map such that

ξt(θ−tω) −→ ξ∞(ω) , as t→∞ , ∀̃ω ∈ Ω , (2.23)
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then ξ∞ is a tempered random variable and the convergence occurs in the tempered

sense. Furthermore, ξ is, in this case, eventually precompact with τξ = 0.

Proof. It follows from [36, Chapter 11, §1, Property M7 on page 248] that ξ∞ is mea-

surable. (If T = R, then think of ξ∞ as the limit along a sequence (tn)n∈N in T>0 going

to infinity.) Let D be a rest set for ξ, and let x0 ∈ X and r ∈ (R>0)Ω
θ be such that

D(·) ⊆ Br(·)(x0). Then, by continuity,

d(ξ∞(ω), x0) = lim
t→∞

d(ξt(θ−tω), x0) 6 r(ω) , ∀̃ω ∈ Ω .

We conclude that ξ∞ is tempered. Furthermore,

d(ξt(θ−tω), ξ∞(ω)) 6 d(ξt(θ−tω), x0) + d(x0, ξ∞(ω)) 6 2r(ω) , ∀̃ω ∈ Ω .

Thus convergence occurs in the tempered sense.

The second statement follows straight from Lemma 2.66.

Recall that an RTA space is a Banach space X which is partially ordered by a solid,

normal, minihedral cone X+ ⊆ X. It follows from Theorem 2.54 that the infima and

suprema in the definition below are well-defined.

Definition 2.68 (Lower and Upper Tails). Let X be a separable RTA space. Given

ξ ∈ KXθ and τξ > 0 such that β
τξ
ξ (ω) is precompact for θ-almost all ω ∈ Ω, the net

(aτ )τ>τξ of random variables Ω→ X defined by

aτ (ω) := inf βτξ (ω) = inf
t>τ

ξt(θ−tω) , ω ∈ Ω , τ > τξ ,

is referred to as a lower tail (of the pullback trajectories ) of ξ. Similarly, the net (bτ )τ>τξ

of random variables Ω→ X defined by

bτ (ω) := supβτξ (ω) = sup
t>τ

ξt(θ−tω) , ω ∈ Ω , τ > τξ ,

is referred to as an upper tail (of the pullback trajectories ) of ξ. 4

Lower and upper tails of pullback trajectories are a prevalent concept in this work.

Since we shall be interested solely in the asymptotic behavior of lower and upper

tails, the nonuniqueness implicit in the definition above will be harmless. Indeed, if

(aτ )τ>τξ and (a′τ )τ>τ ′ξ are lower tails of ξ, then aτ = a′τ for every τ > max{τξ, τ ′ξ}.

Naturally, the same is true of upper tails.
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2.4.3 θ-Limits

Eventually precompact θ-stochastic process evolving on a separable RTA space are

particularly well-behaved. In this section we shall develop notions of lim inf and lim sup

for such processes. These concepts will be the backbones of the constructions leading

up to the small-gain theorem in the next chapter.

Proposition 2.69. Let X be a separable RTA space, ξ : T>0×Ω→ X be any tempered,

eventually precompact θ-stochastic process, and let (aτ )τ>τξ and (bτ )τ>τξ be, respectively,

a lower and an upper tail of the pullback trajectories of ξ. Then (aτ )τ>τξ and (bτ )τ>τξ

both converge in the tempered sense. Moreover, the limits

a∞ := lim
τ→∞

aτ

and

b∞ := lim
τ→∞

bτ

are tempered random variables such that

aσ 6 aτ 6 a∞ 6 b∞ 6 bτ 6 bσ , ∀τ > σ > τξ . (2.24)

Proof. Fix ω ∈ Ω arbitrarily such that β
τξ
ξ (ω) is precompact. We shall show that every

sequence (τn)n∈N in T>τξ going to infinity has a subsequence along which (aτ (ω))τ>τξ

converges to the same value a∞(ω). Thus (aτ (ω))τ>τξ itself converges to a∞(ω).

Since βτξ ⊆ βσξ whenever τ > σ > τξ, we have

aσ 6 aτ 6 bτ 6 bσ , ∀τ > σ > τξ . (2.25)

Let (τn)n∈N be any sequence going to infinity in T>τξ . By passing to a subsequence, if

necessary, we may assume that (τn)n∈N is nondecreasing. So

aτ1(ω) 6 aτ2(ω) 6 aτ3(ω) 6 · · · 6 aτn(ω) 6 · · · .

Now

aτn(ω) ∈ shell(β
τξ
ξ (ω)) , ∀n ∈ N ,

and, since β
τξ
ξ (ω) is precompact, we know from Theorem 2.51 that shell(β

τξ
ξ (ω)) is

compact. So, aτn(ω) −→ a∞(ω) as n → ∞ for some a∞(ω) ∈ X ([50, Lemma 1.2
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on page 3]). Using the same argument, we can show that if (σn)n∈N is any monotone

sequence in T>τξ going to infinity, then there exists ã∞(ω) ∈ X such that

ã∞(ω) := lim
n→∞

aσn(ω) .

Now there are subsequences (kn)n∈N and (ln)n∈N of (n)n∈N such that

τn 6 σkn and τln 6 σn ,

and so

aτn(ω) 6 aσkn (ω) and aτln (ω) 6 aσn(ω) , ∀n ∈ N .

Passing the limit as n goes to infinity we get a∞(ω) 6 ã∞(ω) and a∞(ω) > ã∞(ω),

showing that in fact a∞(ω) = ã∞(ω).

Since β
τξ
ξ (ω) is precompact for θ-almost all ω ∈ Ω, a map a∞ : Ω→ X is well-defined

θ-almost everywhere by

a∞(ω) := lim
τ→∞

aτ (ω) , ω ∈ Ω .

In particular,

a∞ := lim
n→∞

aτn

for any sequence (τn)n∈N in T>τξ going to infinity. So, measurability follows from [36,

Chapter 11, §1, Property M7 on page 248].

The proof that (bτ )τ>τξ converges to a random variable b∞ : Ω→ X goes along the

same lines.

We obtain (2.24) by fixing σ > τξ arbitrarily and taking the limit as τ goes to

infinity in (2.25).

By Theorem 2.54,

aτξ = inf β
τξ
ξ and bτξ = supβ

τξ
ξ

are tempered. It follows from (2.24) and normality that

‖a∞(ω)‖ 6 ‖aτξ(ω)‖+ ‖aτξ(ω)− a∞(ω)‖

6 ‖aτξ(ω)‖+ CX+‖bτξ(ω)− aτξ(ω)‖

6 (1 + CX+)‖aτξ(ω)‖+ ‖bτξ(ω)‖ , ∀̃ω ∈ Ω ,
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where CX+ is the normality constant of the underlying cone X+. This shows that a∞

is tempered. Furthermore,

‖aτ (ω)− a∞(ω)‖ 6 CX+(‖aτξ(ω)‖+ ‖bτξ(ω)‖) , ∀̃ω ∈ Ω , ∀τ > τξ .

Therefore aτ →θ a∞, as we wanted to show. The proof that b∞ is tempered and

bτ →θ b∞ goes along the same lines.

Remark 2.70. The key step in the proof of the proposition above was the observation

that shell(β
τξ
ξ (ω)) is compact. A simpler proof is possible in finite-dimensional spaces.

One first notes that a normal cone in a finite-dimensional space is automatically reg-

ular. Indeed, normality implies that order-bounded sequences are also norm-bounded,

and thus precompact. By [50, Lemma 1.2 on page 3], monotone sequences in partially

ordered, compact spaces converge. This shows that every monotone, order-bounded

sequence must be convergent in a finite-dimensional space which is partially ordered by

a normal cone, thus establishing regularity.

Now, going back to the proof of the proposition, we have

aτ1(ω) 6 aτ2(ω) 6 aτ3(ω) 6 · · · 6 aτn(ω) · · · 6 bτξ(ω) .

Thus, if the X is finite-dimensional, then the sequence (aτn(ω))n∈N) converges by reg-

ularity. �

The proposition above motivates a definition of a “tempered lim sup” and a “tem-

pered lim inf” in separable RTA spaces.

Definition 2.71 (Tempered lim inf and lim sup). Given a separable RTA space X and

a tempered, eventually precompact θ-stochastic process ξ : T>0 × Ω→ X, we define

“ θ-lim ξ ”

to be the (tempered) random variable Ω→ X given by

[θ-lim ξ](ω) := lim
t→∞

ξt(θ−tω) := sup
τ>τξ

inf
t>τ

ξt(θ−tω) , ω ∈ Ω ,

where τξ > 0 is chosen arbitrarily so that β
τξ
ξ (ω) is precompact for θ-almost all ω ∈ Ω.

Similarly, we define

“ θ-lim ξ ”
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to be the (tempered) random variable Ω→ X given by

[θ-lim ξ](ω) := lim
t→∞

ξt(θ−tω) := inf
τ>τξ

sup
t>τ

ξt(θ−tω) , ω ∈ Ω .

Conversely, when we write

θ-lim ξ or θ-lim ξ

for some θ-stochastic process ξ : T>0 × Ω → X, it is to be tacitly understood that ξ

is12 tempered and eventually precompact, and that the symbols represent the random

variables defined above. 4

It follows straight from the definition above that

θ-lim ξ 6 θ-lim ξ

for any tempered, eventually precompact θ-stochastic process ξ : T ×Ω→ X. Moreover,

we will have equality if, and only if ξ converges in the tempered sense.

Lemma 2.72. Suppose that ξ : T>0 × Ω → X is a tempered, eventually precompact

θ-stochastic process on a separable RTA space X. Then

ξ̌t −→θ ξ∞ as t→∞ (2.26)

for some ξ ∈ XΩ
θ if, and only if

θ-lim ξ = θ-lim = ξ∞ . (2.27)

Proof. (⇐) Suppose that (2.27) holds for some ξ ∈ XΩ
θ . Let (aτ )τ>τξ and (bτ )τ>τξ be

a lower and an upper tail of the pullback trajectories of ξ, respectively. By definition,

we have

aτ (ω) 6 ξ̌τ (ω) 6 bτ (ω) , ∀τ > τξ , ∀̃ω ∈ Ω .

By Proposition 2.69, we have

aτ (ω) 6 ξ∞(ω) 6 bτ (ω) , ∀τ > τξ , ∀̃ω ∈ Ω .

12Whether temperedness and eventual precompactness are being assumed or have been proved to
hold will always be clear from the context.
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Thus by normality

‖ξ̌τ (ω)− ξ∞(ω)‖ 6 CX+‖bτ (ω)− aτ (ω)‖ , ∀τ > 0 , ∀̃ω ∈ Ω ,

where CX+ > 0 is the normality constant of the underlying cone X+ ⊆ X. Again by

Proposition 2.69 (together with the hypothesis that θ-lim ξ = θ-lim ξ), bτ − aτ →θ 0.

Combining this with the inequality we obtain (2.26).

(⇒) Now suppose (2.26) holds. Fix arbitrarily ω ∈ Ω such that

ξ̌t(ω) −→ ξ∞(ω) as t→∞ . (2.28)

Then it follows from Lemma 2.44 that

aτ (ω) = inf
t>τ

ξ̌t(ω) −→ ξ∞(ω)

and

bτ (ω) = sup
t>τ

ξ̌t(ω) −→ ξ∞(ω)

as τ → ∞. Since (2.28) holds for θ-almost all ω ∈ Ω, we conclude that (2.27) also

holds.

Naturally, inequalities are also preserved by tempered lim inf and tempered lim sup.

Lemma 2.73. Suppose that ξ1, ξ2 : T>0 × Ω→ X are tempered, eventually precompact

θ-stochastic processes on a separable RTA space X. If ξ1 6 ξ2, then

θ-lim ξ1 6 θ-lim ξ2 and θ-lim ξ1 6 θ-lim ξ2 .

Proof. We will carry out the details for

θ-lim ξ1 6 θ-lim ξ2 .

The other inequality can be proved in the exact same way. Let τξ > 0 be such that

β
τξ
ξ1

(ω) and β
τξ
ξ2

(ω) are precompact for θ-almost every ω ∈ Ω, and let (b
(1)
τ )τ>τξ and

(b
(2)
τ )τ>τξ be upper tails of the pullback trajectories of ξ1 and ξ2, respectively. Since

(ξ1)t(ω) 6 (ξ2)t(ω) , ∀t > 0 , ∀̃ω ∈ Ω ,
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it follows by θ-invariance that

(ξ1)t(θ−tω) 6 (ξ2)t(θ−tω) , ∀t > 0 , ∀̃ω ∈ Ω ,

Hence

b
(1)
τ (ω) = sup{(ξ1)t(θ−tω) ; t > τ}

6 sup{(ξ2)t(θ−tω) ; t > τ}

= b
(2)
τ (ω) , ∀τ > τξ , ∀̃ω ∈ Ω ,

by Lemma 2.37. By taking the limits as τ →∞ in the inequality above, it follows from

Proposition 2.69 that

θ-lim ξ1 = lim
τ→∞

(ξ1)τ 6 lim
τ→∞

(ξ2)τ = θ-lim ξ2 .

This completes the proof.
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Chapter 3

Random Dynamical Systems with Inputs and Outputs

In this chapter, unless otherwise specified, X, U and Y will be assumed to be Polish

spaces, equipped with their respective Borel σ-algebras whenever measure-theoretic

considerations are being made. We shall also assume that the probability space (Ω,F ,P)

constituting the underlying MPDS θ be complete. Much of what we will do would still

make sense in a slightly more general setting. However our most important definitions

and results will depend on one or more features of this infrastructure. Thus assuming

that these conditions are all satisfied from the beginning will allow for a more unified

treatment of the subject. We will draw remarks discussing what might have happened

under weaker assumptions whenever pertinent.

3.1 Random Dynamical Systems

We begin by reviewing the “random dynamical systems” framework of L. Arnold [4].

We take the opportunity to work out in the detail the linear example, which shall serve

as a point of reference and scaffold for examples discussed throughout the rest of the

work.

Definition 3.1 (Random Dynamical Systems). A (continuous ) random dynamical

system (RDS ) on X is an ordered pair (θ, ϕ) in which θ is an MPDS and

ϕ : T>0 × Ω×X −→ X

is a (continuous ) cocycle over θ—that is, a (B(T>0)⊗F ⊗B(X))-measurable map such

that1

1For any nonnempty set S, idS : S → S is the identity map on S, defined by idS(s) := s for each
s ∈ S.
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(S1) ϕ(t, ω) := ϕ(t, ω, ·) : X → X is continuous for each (t, ω) ∈ T>0 × Ω,

(S2) ϕ(0, ω) = idX for each ω ∈ Ω, and

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) , ∀ω ∈ Ω , ∀s, t > 0

(cocycle property ). 4

The cocycle property generalizes the semigroup property of deterministic dynamical

systems. Indeed, RDS include deterministic dynamical systems as the special case in

which Ω is a singleton.

As with the notation for MPDS in the previous chapter, the symbols ‘ϕ’ and ‘X’ will

also be reserved throughout the rest of this work to carry the meanings and perform the

functions assigned in Definition 3.1. Therefore when we refer to an RDS (θ, ϕ), or to a

cocycle ϕ over an MPDS θ, we tacitly assume ϕ to have state space X. In particular,

X will always have at least the structure of a Polish space,2 as stated in the beginning

of the chapter.

Example 3.2 (RDS Generated by Random Linear Differential Equations). Suppose

T = R ,

and let A : Ω→Mn×n(R) be a random n× n real matrix such that, for each ω ∈ Ω,

t 7−→ ‖A(θtω)‖ , t ∈ R ,

is locally integrable. For each ω ∈ Ω, let

Ξ(·, ·, ω) : R× R −→Mn×n(R)

be the fundamental matrix solution of the linear differential equation

ξ̇ = A(θtω)ξ , t ∈ R (3.1)

(see [52, Section C.4 on pages 487–491])—that is, for each fixed s ∈ R,

Ξ(s, ·, ω) : R −→Mn×n(R)

2The definition of RDS would still make sense if X were only assumed to be a topological space.
However, as pointed out in the beginning of the chapter, we shall not need to deal with the concept in
such generality.
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is the unique absolutely continuous R→Mn×n(R) map such that

Ξ(s, s, ω) = In :=



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


and

d

dt
Ξ(s, t, ω) = A(θtω)Ξ(s, t, ω)

for Lebesgue-almost all t ∈ R. We discuss further properties of Ξ in Lemma 3.3 below.

For the immediate let

Φ: R>0 × Ω× Rn −→ Rn

(t, ω, x) 7−→ Ξ(0, t, ω) · x
.

Then clearly Φ(t, ω, ·) = Ξ(0, t, ω) : Rn → Rn is continuous for each fixed (t, ω) ∈

R>0 × Ω. Moreover, Φ(0, ω, x) = x for every (ω, x) ∈ Ω× Rn, and

d

dt
Φ(t, ω, x) = A(θtω)Φ(t, ω, x)

for Lebesgue-almost all t > 0, for each (ω, x) ∈ Ω × Rn. It can then be shown using

uniqueness of solutions for (3.1) that Φ has the cocycle property,

Φ(t+ s, ω, x) = Φ(t, θsω,Φ(t, ω, x)) , ∀s, t > 0 , ∀ω ∈ Ω , ∀x ∈ Rn .

(The argument goes along the lines of the proof of Lemma 3.3, invoking Lemma B.5 from

Appendix B.) It can also be shown that Φ is indeed (B(R>0)⊗F⊗B(X))-measurable (see

Remark 3.43 and Example 3.44 at the end of Subsection 3.4.2). Thus (θ,Φ) constitutes

an RDS, henceforth referred to as the RDS generated by the (linear ) random differential

equation (RDE ) (3.1). ♦

We will build upon this example, referring to it several times throughout the rest

of the work. Thus it will be convenient to have the symbols ‘Ξ’ and ‘Φ’ locked as well.

Thus whenever we use them, the assumptions and the construction in Example 3.2 are

to be tacitly understood.



60

Lemma 3.3 (Properties of the Fundamental Matrix Solution). Assume the same hy-

potheses as in Example 3.2. Then

(1) Ξ(0, t, ω) ·
(
Ξ(0, s, ω)

)−1 ≡ Ξ(s, t, ω), and

(2) Ξ(s, t, θσω) ≡ Ξ(σ + s, σ + t, ω).

Proof. In each case the proof comes down to showing that, for each arbitrarily fixed

s, σ ∈ R and ω ∈ Ω, the function of t ∈ R defined by each side of the equation satisfies

the same initial value problem. So equality follows by uniqueness of solutions.

(1) We have

d

dt
Ξ(s, t, ω) = A(θtω)Ξ(s, t, ω)

and, likewise,

d

dt

(
Ξ(0, t, ω) ·

(
Ξ(0, s, ω)

)−1
)

=

(
d

dt
Ξ(0, t, ω)

)
·
(
Ξ(0, s, ω)

)−1

= A(θtω)
(

Ξ(0, t, ω) ·
(
Ξ(0, s, ω)

)−1
)

for Lebesgue-almost all t ∈ R. Moreover,(
Ξ(s, t, ω)

)
t=s

= Ξ(s, s, ω)

= In

= Ξ(0, s, ω) ·
(
Ξ(0, s, ω)

)−1

=
(

Ξ(0, t, ω) ·
(
Ξ(0, s, ω)

)−1
)
t=s

.

Thus both

t 7−→ Ξ(s, t, ω) , t ∈ R ,

and

t 7−→ Ξ(0, t, ω) ·
(
Ξ(0, s, ω)

)−1
, t ∈ R ,

are solutions of the initial value problem

ξ̇ = A(θtω)ξ , ξ(s) = In , t ∈ R .

The equality then follows by the uniqueness of solutions for said initial value problem

(see Lemma B.5).
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(2) The argument is essentially the same. We have

d

dt
Ξ(s, t, θσω) = A(θtθσω)Ξ(s, t, θσω) = A(θσ+tω)Ξ(s, t, θσω)

and, by the Chain Rule,

d

dt
Ξ(σ + s, σ + t, ω) = 1 ·

(
d

dτ
Ξ(σ + s, τ, ω)

)
τ=σ+t

=
(
A(θτω)Ξ(σ + s, τ, ω)

)
τ=σ+t

= A(θσ+tω)Ξ(σ + s, σ + t, ω)

for Lebesgue-almost all t ∈ R. So both sides of (2), as functions of t ∈ R, satisfy the

differential equation

ξ̇ = A(θσ+tω)ξ , t ∈ R .

Since they also agree at t = s, where we have

Ξ(s, s, θσω) = In = Ξ(σ + s, σ + s, ω) ,

equality follows once again from uniqueness of solutions for the corresponding initial

value problem.

3.1.1 Trajectories and Equilibria

We now review some basic RDS concepts, introducing a few pieces of notation not

found in Arnold [4] or Chueshov [8].

Let (θ, ϕ) be an RDS. Given x ∈ XΩ
B , we define the (forward ) trajectory starting at

x to be the θ-stochastic process ξx ∈ SXθ defined by

ξxt (ω) := ϕ(t, ω, x(ω)) , (t, ω) ∈ T>0 × Ω . (3.2)

The pullback trajectory starting at x is, in turn, defined to be the θ-stochastic process

ξ̌x : T>0 × Ω→ X defined by

ξ̌xt (ω) := ξxt (θ−tω) = ϕ(t, θ−tω, x(θ−tω)) , (t, ω) ∈ T>0 × Ω . (3.3)

So, the pullback trajectory starting at x of an RDS is simply the pullback (in the sense

of Definition 2.56) of the forward trajectory starting at x of the same RDS. Recall that
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we will always use the check mark ˇ to indicate the pullback of the θ-stochastic process

being accented.

We slightly modify the standard notion of equilibrium for RDS (see, for instance,

[8, Definition 1.7.1 on page 38]) to allow for the defining property to hold only θ-almost

everywhere, as opposed to everywhere.

Definition 3.4 (Equilibrium). An equilibrium3 of an RDS (θ, ϕ) is a random variable

x ∈ XΩ
B such that

ξxt (ω) = ϕ(t, ω, x(ω)) = x(θtω)

for all t > 0, for θ-almost all ω ∈ Ω. 4

In view of the notion of pullback convergence with which we will be working (see

Subsection 3.1.2), it is more natural to think of the concept of equilibrium in terms of

pullback trajectories. Observe that a random variable x ∈ XΩ
B is an equilibrium of the

RDS (θ, ϕ) if, and only if

ξ̌xt (ω) = ϕ(t, θ−tω, x(θ−tω)) = x(ω) , ∀̃ω ∈ Ω , ∀t > 0 .

For deterministic systems, a point in the state space is an equilibrium if, and only

if the trajectory of the system starting at that point is constant. The natural analog

with ‘θ-stationary processes’ in place of ‘constant trajectories’ holds for RDS.

Proposition 3.5. Given an RDS (θ, ϕ) and a random state x ∈ XΩ
B , the following

three properties are equivalent.

(1) x is an equilibrium.

(2) The trajectory ξx, as defined in Equation (3.2), is θ-stationary.

(3) The map t 7→ ξ̌xt ∈ XΩ
B , t ∈ T>0, is constant.

Proof. (1)⇔ (2). If x is an equilibrium, then ξx must be θ-stationary by Definition 3.4

and Lemma 2.8. Conversely, if ξx is θ-stationary, then x = ξx0 is an equilibrium by the

same lemma.

3Sometimes referred to as a random invariant point, or random fixed point, or stationary solution.
See [45, Definition 2 on page 584], and also Proposition 3.5 below.
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(1) ⇔ (3). If x is an equilibrium, then ξ̌xt = x for all t > 0 as observed above.

Conversely, if (3) holds, then

ξxt (ω) = ξ̌xt (θtω) = ξ̌x0 (θtω) = x(θtω)

for all t > 0, for θ-almost all ω ∈ Ω. Thus x is an equilibrium.

3.1.2 Pullback Convergence

In this work, we follow the tradition developed and canonized in the literature on

nonautonomous dynamical systems of considering convergence in the pullback sense

[4, 8, 33, 13].

Definition 3.6. (Pullback Convergence) A θ-stochastic process ξ ∈ SXθ is said to

converge to a random variable ξ∞ ∈ XΩ
B in the pullback sense if

ξ̌t(ω) = ξt(θ−tω) −→ ξ∞(ω) as t→∞ ,

for θ-almost all ω ∈ Ω. 4

One may argue that forward convergence would have been a more natural object to

consider when thinking about applications. Recall that almost sure convergence implies

convergence in probability. It then follows from (2.19) in Section 2.4 that a θ-stochastic

process which converges in the pullback sense will also converge, in probability, in the

forward sense. Therefore as far as applications go, pullbacks are still useful.

Mathematically, there are a couple other reasons pullbacks seem to be the most

natural sense in which to study asymptotic behavior of RDS.

First note that

(t, x) 7−→ Φ̌tx := ξ̌xt , (t, x) ∈ T>0 ×XΩ
B ,

defines a (skew-product ) semiflow Φ̌ : T>0 ×XΩ
B → XΩ

B on XΩ
B—that is,

Φ̌0x = x , ∀x ∈ XΩ
B ,

and

Φ̌s+tx = Φ̌sΦ̌tx , ∀s, t ∈ T>0 , ∀x ∈ XΩ
B .
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In other words, pullback trajectories of the RDS (θ, ϕ) are forward paths of the dy-

namical system Φ̌, which could then be studied in light of the classical theory provided

that XΩ
B is equipped with a suitable topology. However, one of the points of the

RDS approach of Arnold lies precisely on the benefits of an explicit separation of the

deterministic and random components of a system evolving subject to random pertur-

bations, in particular, dropping the requirement that the space of random outcomes

has any topological structure at all.

Pullbacks have also been noted as a more appropriate sense in which to formulate

notions of “invariance” for nonautonomous systems. This is true even for deterministic

systems [33]. Proposition 3.7 and Remark 3.8 below illustrate this point.

Proposition 3.7. Let (θ, ϕ) be an RDS. Suppose that there exist a random initial state

x ∈ XΩ
B and a map x∞ : Ω→ X such that

ξ̌xt (ω) −→ x∞(ω) as t→∞ , ∀̃ω ∈ Ω . (3.4)

Then x∞ is an equilibrium.

Proof. For each t ∈ T>0, the map

ω 7−→ ξ̌t(ω) = ϕ(t, θ−tω, x(θ−tω)) , ω ∈ Ω ,

is measurable. So it follows from [36, Chapter 11, §1, Property M7 on page 248] that x∞

is measurable. (If T = R, just pick a subsequence (tn)n∈N going to infinity in [0,∞).)

Now for each ω ∈ Ω such that the limit in (3.4) exists, and each τ ∈ T>0, we also

have

lim
t→∞

ϕ(t− τ, θτ−tω, x(θτ−tω)) = x∞(ω) .

By θ-invariance, the limit in (3.4) exists for θτω as well. Hence

x∞(θτω) = lim
t→∞

ϕ(t, θ−tθτω, x(θ−tθτω))

= lim
t→∞

ϕ(τ + t− τ, θ−(t−τ)ω, x(θ−(t−τ)ω))

= lim
t→∞

ϕ
(
τ, θt−τθ−(t−τ)ω, ϕ(t− τ, θτ−tω, x(θτ−tω))

)
= ϕ(τ, ω, x∞(ω))

by the cocycle property in (S2) and continuity property in (S1).
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The next example illustrates the kind of constraint imposed upon an equilibrium of

an RDS by its being a forward limit.

Remark 3.8 (Forward Limits and Equilibria). Given an RDS (θ, ϕ), assume that x∞ ∈

XΩ
B is an equilibrium of the RDS, and suppose that x∞ is the pointwise limit of the

forward trajectory of (θ, ϕ) starting at x∞—in other words,

ϕ(t, ω, x∞(ω)) = x∞(θtω) , ∀̃ω ∈ Ω , ∀t > 0 ,

and

lim
t→∞

ϕ(t, ω, x∞(ω)) = x∞(ω) , ∀̃ω ∈ Ω .

Thus

lim
t→∞

x∞(θtω) = x∞(ω) , ∀̃ω ∈ Ω .

Now

x∞(θτω) = lim
t→∞

x∞(θtθτω) = x∞(ω) , ∀̃ω ∈ Ω , ∀τ ∈ R ,

meaning that x∞ must be constant along each of its orbits. �

As pointed out above, a θ-stochastic process converges in probability in the forward

sense if, and only if it also converges in probability in the pullback sense, in which case

the limits are the same except on a θ-invariant subset of probability zero of Ω. The next

example shows that this equivalence is not true in general for pointwise convergence.

Example 3.9 (Forward versus Pullback Convergence). Convergence in the pullback

sense does not imply convergence in the forward sense. Consider the MPDS

θ = (Ω,F ,P, (θn)n∈Z) ,

where Ω := {−1, 1}, F := 2Ω, P is determined by

P({−1}) = P({1}) =
1

2
,

and θ is the measure preserving dynamical system generated by

θ : Ω −→ Ω

ω 7−→ −ω
.
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Thus

θnω = (−1)nω , ∀n ∈ Z , ∀ω ∈ Ω .

Let X := {−1, 1} also, and consider the random variable

x0 : Ω 7−→ Ω

ω 7−→ ω

and the θ-stochastic process ξ ∈ SXθ defined by

ξn(ω) := (−1)nω , (n, ω) ∈ Z>0 × Ω .

Then ξ converges to x0 in the pullback sense,

ξn(θ−nω) = (−1)nθ−nω = (−1)0ω = ω , ∀n > 0 , ∀ω ∈ Ω .

However ξ clearly does not converge in the forward sense.

A similar construction yields a counterexample to the hypothesis that convergence

in the forward sense implies convergence in the pullback sense. Let ξ̃ ∈ SXθ be the

θ-stochastic process defined by

ξ̃n(ω) := ω , (n, ω) ∈ Z>0 × Ω .

Then ξ̃ converges to x0 in the forward sense. However,

ξ̃n(θ−nω) = θ−nω = (−1)−nω , ∀n > 0 , ∀ω ∈ Ω .

So ξ̃ does not converge in the pullback sense. ♦

3.1.3 Perfection of Crude Cocycles

We briefly review the concept of perfection of crude cocycles discussed in Arnold’s [4,

Section 1.2]. It is customary for the definition of an RDS to require that the cocycle

property of the flow ϕ in (S2) holds for every s, t ∈ T>0 and every ω ∈ Ω. If we want to

emphasize this fact we shall say that ϕ is a perfect cocycle (over the underlying MPDS

θ).

Definition 3.10 (Crude Cocycle). We say that ϕ : T>0×Ω×X → X is a crude cocycle

(over θ ) if it is a (B(T>0)⊗F ⊗ B)-measurable map satisfying (S1) and
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(S2′) ϕ(0, ω) = idX for each ω ∈ Ω and, for every s > 0, there exists a subset Ωs ⊆ Ω

of full measure such that

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) , ∀t > 0 , ∀ω ∈ Ωs .

(The Ωs’s need not be θ-invariant.) 4

In particular, a perfect cocycle is a crude cocycle with Ωs = Ω for each s > 0.

As Arnold points out, there are circumstances in which this flexibility in the re-

quirements for a cocycle is desirable. For instance, the flow of a stochastic differential

equation is only guaranteed to be a crude cocycle [4, Section 2.3]. Another example

will come up below after we introduce RDS with inputs. For consider (deterministic)

controlled dynamical systems. Such systems yield a (deterministic) dynamical system

when restricted to a constant input. One would then expect a sensible extension of the

concept to random dynamical systems to have an analogous property. However, as we

shall see in the proof of Lemma 3.29 below, the restriction of the flow of an RDS with

inputs to a θ-stationary input is not necessarily a perfect cocycle.

Definition 3.11 (Indistinguishable Crude Cocycles). Let θ be an MPDS and

ϕ,ψ : T>0 × Ω×X → X

be crude cocycles over θ. If there exists a subset N ∈ F such that P(N) = 0 and

{ω ∈ Ω ; ϕ(t, ω) 6= ψ(t, ω) , for some t > 0} ⊆ N ,

then ϕ and ψ are said to be indistinguishable. 4

Definition 3.12 (Perfection of Crude Cocycles). Let ϕ,ψ : T>0×Ω×X → X be crude

cocycles over an MPDS θ. We say that ψ is a perfection of ϕ if ψ is a perfect cocycle,

and ϕ and ψ are indistinguishable. In this case we may also say that ϕ is perfected by

ψ. 4

Arnold’s theory of perfection of crude cocycles will not be needed in this work.

The Ωs’s of the crude cocycles we shall have to deal with will be the same for every

s > 0, and actually θ-invariant. So, it will be enough to simply redefine the flow on a
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θ-invariant subset of measure zero of Ω. (See Subsection 3.3.1 below.) We nevertheless

state the proposition below for the sake of completeness.

Proposition 3.13. Let θ = (F ,Ω,P, (θt)t∈T ) be an MPDS with T = Z or T = R.

Suppose ϕ : T>0 × Ω×X → X is a crude cocycle over θ evolving on a locally compact,

locally connected, Hausdorff topological space X. Then ϕ can be perfected; in other

words, there exists a perfect cocycle ψ : T>0 × Ω × X → X such that ϕ and ψ are

indistinguishable.

Proof. See Arnold [4, Theorem 1.2.1] for the discrete case, which actually holds with

weaker hypotheses and yields stronger conclusions. For the continuous case, see Arnold

[4, Theorem 1.2.2 and Corollary 1.2.4].

3.2 RDS with Inputs and Outputs

We now introduce our new concept of “random dynamical systems with inputs.” It

extends the notion of RDS to systems in which there is a stochastic external input, or

forcing function. A contribution of this work is the precise formulation of this concept,

particularly the way in which the argument of the input is shifted in the semigroup

(cocycle) property.

Recall the θ-shift operator introduced in Subsection 2.1.2. Given any u ∈ SUθ and

any s > 0, their θ-shift ρs(u) : T>0 × Ω→ U is given by

[ρs(u)]t(ω) := ut+s(θ−sω) , (t, ω) ∈ T>0 × Ω .

Recall, also, the operation of θ-concatenation of θ-stochastic processes introduced in

Section 2.4. Given u, v ∈ SUθ and s ∈ T>0, their θ-concatenation was defined to be the

θ-stochastic process u♦sv : T>0 × Ω→ U , given by

(u♦sv)τ (ω) :=

 uτ (ω) , 0 6 τ < s

vτ−s(θsω) , s 6 τ
, (τ, ω) ∈ T>0 × Ω .

Definition 3.14 (θ-Inputs). We say that a subset U ⊆ SUθ is a class of θ-inputs if it

has the following closure properties.
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(J1) ρs(u) ∈ U for any u ∈ U and any s > 0, and

(J2) u♦sv ∈ U for any u, v ∈ U and any s > 0. 4

Thus, in other words, a class of θ-inputs is a subset of SUθ which is closed under θ-shifts

and θ-concatenation.

Example 3.15 (θ-Inputs). It follows from Lemmas 2.64 and 2.65 that the family VUθ
of tempered θ-stochastic processes T>0 × Ω → U is a class of θ-inputs. Moreover, it

follows from Lemma 2.63 that UΩ
θ ⊆ VUθ , where we identify4 UΩ

θ with the subset of

SUθ consisting of the θ-stationary θ-stochastic processes T>0 × Ω → U generated (via

Lemma 2.8) by tempered random variables Ω→ U .

It is not difficult to see that the family KUθ of eventually precompact θ-stochastic

processes T>0×Ω→ U also satisfies (J1) and (J2), thus constituting a class of θ-inputs

as well. Note that it is not necessarily true, in general, that UΩ
θ ⊆ KUθ .

We introduce a third notable class of θ-inputs. Let SU∞ be the family consisting of

all θ-stochastic processes u ∈ SUθ such that

t 7−→ |ut(ω)| , t > 0 ,

is locally essentially bounded for each ω ∈ Ω. To see that SU∞ is indeed a class of

θ-inputs, fix arbitrarily s > 0, u, v ∈ SU∞, and ω ∈ Ω. Then

t 7−→ |[ρs(u)]t(ω)| = us+t(θ−sω) , t > 0 ,

is locally essentially bounded. We can readily see from the definition above that

t 7−→ |(u♦sv)t(ω)| , t > 0 ,

is also locally essentially bounded. This shows SU∞ satisfies (J1) and (J2). It follows

from Lemma 2.33 that UΩ
θ ⊆ SU∞.

Finally, note that the intersection of classes of θ-inputs is a class of θ-inputs. In

particular, VUθ ∩ KUθ , VUθ ∩ SU∞, KUθ ∩ VUθ and VUθ ∩ KUθ ∩ SU∞ are classes of θ-inputs.

Furthermore, UΩ
θ ⊆ VUθ ∩ SU∞. ♦

4This identification will be henceforth tacitly understood.
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Definition 3.16 (Random Dynamical Systems with Inputs). A random dynamical

system with inputs (RDSI ) is an ordered triple (θ, ϕ,U) consisting of an MPDS θ =

(Ω,F ,P, (θt)t∈T ), a class of θ-inputs U ⊆ SUθ , and a map

ϕ : T>0 × Ω×X × U → X

satisfying,

(I1) ϕu := ϕ(·, ·, ·, u) : T>0×Ω×X → X is (B(T>0)⊗F ⊗B)-measurable for each fixed

u ∈ U ;

(I2) ϕ(t, ω, ·, u) : X → X is continuous for each fixed (t, ω, u) ∈ T>0 × Ω× U ;

(I3) ϕ(0, ω, x, u) = x for each (ω, x, u) ∈ Ω×X × U ;

(I4) for any s, t > 0, ω ∈ Ω, x ∈ X, and u, v ∈ U , if

ϕ(s, ω, x, u) = y

and

ϕ(t, θsω, y, v) = z ,

then

z = ϕ(s+ t, ω, x, u♦sv) ; and

(I5) given any t > 0, ω ∈ Ω, x ∈ X, and u, v ∈ U , if uτ (ω) = vτ (ω) for Lebesgue-almost

all τ ∈ [0, t), then ϕ(t, ω, x, u) = ϕ(t, ω, x, v). 4

As with MPDS and RDS, whenever we talk about an RDSI (θ, ϕ,U), we tacitly

assume the notation laid above, unless otherwise specified. (I1) and (I2) are regularity

conditions. (I3) means that “nothing has happened if one is still at time t = 0.” (I4)

generalizes the cocycle property of RDS (see also Remark 3.17 below), and (I5) states

that the evolution of an RDS subject to an input u is, so to speak, “independent of

irrelevant random input values.”

Remark 3.17. Notice that for each arbitrarily fixed s, t > 0, x ∈ X, and ω ∈ Ω,

ϕ(t+ s, ω, x, u) = ϕ(t, θsω, ϕ(s, ω, x, u), ρs(u)) , ∀u ∈ U .

This follows straight from (I4) with v = ρs(u), which then yields u♦sv = u. �
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The shift operator ρs has a physical interpretation. The right-hand side in

[ρs(u)]t(ω) = ut+s(θ−sω)

is the input as interpreted by an observer of the RDSI ϕ who started at time t1 = 0,

while the left-hand side is how someone who started observing the system at time t2 = s

would describe it t units of time later—that is, at time t + s from the perspective of

the first observer. Following this interpretation, a θ-stationary input would then be an

input which is observed to look the same, regardless of when one started observing it.

Example 3.18. (RDSI Generated by Random Differential Linear Equations with Inputs)

This generalizes Example 3.2. Given an MPDS θ, suppose that A : Ω→Mn×n(R) and

B : Ω→Mn×k(R) are random real matrices such that, for each ω ∈ Ω,

t 7−→ ‖A(θtω)‖ , t > 0 ,

is locally integrable and

t 7−→ ‖B(θtω)‖ , t > 0 ,

is locally essentially bounded. Let U := Rk and let SU∞ ⊆ SUθ be the class of θ-inputs

from Example 3.15. We consider the random differential equation with inputs (RDEI )

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t > 0 , ω ∈ Ω , u ∈ SU∞ . (3.5)

Let Ξ: R× R× Ω→Mn×n(R) be the fundamental matrix solution of the homoge-

neous, linear RDE

ξ̇ = A(θtω)ξ , t > 0 ,

and let (θ,Φ) be the RDS generated by the same equation (refer to Example 3.2). For

each fixed (ω, u) ∈ Ω× SU∞, define Ψ(·, ω, u) : R>0 → Rn by

Ψ(t, ω, u) :=

∫ t

0
Ξ(σ, t, ω)B(θσω)uσ(ω) dσ , t > 0 .

Finally, define

ϕ : R>0 × Ω× Rn × SU∞ −→ Rn

(t, ω, x, u) 7−→ Φ(t, ω, x) + Ψ(t, ω, u)

.
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Then for any arbitrarily fixed (ω, x, u), we have

ϕ(0, ω, x, u) = x ,

and, by the Chain Rule,

d

dt
ϕ(t, ω, x, u) =

d

dt
Φ(t, ω, x) +

d

dt
Ψ(t, ω, u)

= A(θtω)Φ(t, ω, x)

+ Ξ(t, t, ω)B(θtω)ut(ω) +

∫ t

0
A(θtω)Ξ(σ, t, ω)B(θσω)uσ(ω) dσ

= A(θtω)

(
Φ(t, ω, x) +

∫ t

0
Ξ(σ, t, ω)B(θσω)uσ(ω) dσ

)
+B(θtω)ut(ω)

= A(θt)ϕ(t, ω, x, u) +B(θtω)ut(ω)

for Lebesgue-almost every t > 0. Thus ϕ indeed satisfies the RDEI (3.29).

Furthermore, (θ, ϕ,SU∞) is an RDSI. Indeed, (I2) and (I3) follow directly from the

analogous properties of Φ. Properties (I4) and (I5) follow from uniqueness of solutions

applied for each fixed ω ∈ Ω—one basically has to check that both sides of the identities

in (I4) and (I5), when looked at as functions of t for arbitrarily fixed values of the

other variables, define solutions of the same differential equation with the same initial

condition. The measurability requirement in (I1) seems to be the trickiest property to

check. For this, as well as the details of how to check (I2)–(I5), we refer the reader to

Theorem 3.42 and Example 3.44 further down.

We shall refer to the RDSI (θ, ϕ,SU∞) constructed above as the RDSI generated by

the RDEI (3.29). ♦

Recall the concepts of tempered and precompact trajectories from Section 2.4. In

what follows, we shall often require that the RDSI in question preserves these properties

when subject to inputs having them. The next two definitions make this idea precise.

Definition 3.19 (Tempered RDSI). An RDSI (θ, ϕ,U) is said to be tempered if the

θ-stochastic processes

(t, ω) 7−→ ϕ(t, ω, x, u) , (t, ω) ∈ T>0 × Ω ,
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are tempered for each tempered random initial state x ∈ XΩ
θ and each tempered input

u ∈ U . 4

Given any tempered initial state x ∈ XΩ
θ and any tempered input u ∈ SUθ , let

D : Ω→ 2X\{∅} be a rest set. Then

ϕ(t, θ−tω, x(θ−tω), u) ∈ D(ω) , ∀t > 0 , ∀̃ω ∈ Ω .

Thus

ω 7−→ ϕ(t, θ−tω, x(θ−tω, u)) , ω ∈ Ω ,

is a tempered random variable for each t > 0.

Definition 3.20 (Compact RDSI). An RDSI (θ, ϕ,U) is said to be compact if the

θ-stochastic processes

(t, ω) 7−→ ϕ(t, ω, x, u) , (t, ω) ∈ T>0 × Ω ,

are eventually precompact for every tempered initial state x ∈ XΩ
θ and every eventually

precompact input u ∈ U . 4

Although the context here is somewhat different, this definition is related to the

concept of compact RDS given in [8, Definition 1.4.3 on page 30]. Chueshov does not

require the “entering time” t0(ω) to be uniform in ω, while we do require the entering

time τξ in Definition 2.61 to be the same for θ-almost every ω ∈ Ω. On the other hand,

Chueshov requires the “absorbing set” to be the same for every initial state, while we

allow for it to depend on x ∈ XΩ
θ .

Finally, we introduce a concept of outputs.

Definition 3.21 (Output Functions). An output function is a (F ⊗B(X))-measurable

map h : Ω ×X → Y into a Polish space Y such that h(ω, ·) : X → Y is continuous for

each ω ∈ Ω. In this context Y is called an output space. 4

Definition 3.22 (Random Dynamical Systems with Inputs and Outputs). A random

dynamical system with inputs and outputs (RDSIO ) is a quadruple (θ, ϕ,U , h), such

that (θ, ϕ,U) is an RDSI, and h is an output function. 4
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It may sometimes be useful to refer to a random dynamical system with outputs (RDSO )

only, by which we mean an ordered triple (θ, ϕ, h) where (θ, ϕ) is an RDS and h is an

output function.

The Ω-component in the domain of output functions is important. It allows for the

concept to model uncertainties in the readout as well.

We will discuss systems with outputs in greater depth in the next subsection. We

will be concerned, at first, with issues of algebraic nature; in other words, how inputs,

outputs and pullbacks interact. We will consider regularity properties of output func-

tions in the next chapter, in the context of setting up the stage for the Small-Gain

Theorem (Theorem 4.28).

3.2.1 Pullback trajectories

Let (θ, ϕ,U , h) be an RDSIO. Given x ∈ XΩ
B and u ∈ U , we define the (forward )

trajectory starting at x and subject to u to be the θ-stochastic process ξx,u ∈ SXθ defined

by

ξx,ut (ω) := ϕ(t, ω, x(ω), u) , (t, ω) ∈ T>0 × Ω .

We then define the pullback trajectory starting at x and subject to u to be the θ-

stochastic process ξ̌x,u ∈ SXθ defined by

ξ̌x,ut (ω) := ξx,ut (θ−tω) = ϕ(t, θ−tω, x(θ−tω), u) , (t, ω) ∈ T>0 × Ω .

The (forward ) output trajectory corresponding to initial state x and input u is defined

to be the θ-stochastic process ηx,u ∈ SYθ , where

ηx,ut (ω) := h(θtω, ξ
x,u
t (ω)) = h(θtω, ϕ(t, ω, x(ω), u)) , (t, ω) ∈ T>0 × Ω ,

while the pullback output trajectory corresponding to initial state x and input u is anal-

ogously defined to be the θ-stochastic process η̌x,u ∈ SYθ , where

η̌x,ut (ω) := ηx,ut (θ−tω) = h(ω, ϕ(t, θ−tω, x(θ−tω), u)) , (t, ω) ∈ T>0 × Ω .

Note that

η̌x,ut ≡ h(ω, ξ̌x,ut (ω)) .
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For RDSI the definitions of ‘forward’ and ‘pullback’ trajectories are the same, and we

also use the notations ξx,u and ξ̌x,u.

For RDSO the definitions are analogous, except that they do not depend on any

inputs. So forward and pullback trajectories are defined as for RDS (refer to (3.2) and

(3.3)), and we also use the notations ξx and ξ̌x, respectively. Forward and pullback

output trajectories are defined analogously. We define the (forward ) output trajectory

corresponding to initial state x to be the θ-stochastic process ηx ∈ SYθ defined by

ηxt (ω) := h(θtω, ξ
x
t (ω)) = h(θtω, ϕ(t, ω, x(ω))) , (t, ω) ∈ T>0 × Ω ,

and the pullback output trajectory corresponding to initial state x to be the θ-stochastic

process η̌x ∈ SYθ defined by

η̌xt (ω) := h(ω, ξ̌xt (ω)) = h(ω, ϕ(t, θ−tω, x(θ−tω))) , (t, ω) ∈ T>0 × Ω .

Observe that the input u is not shifted in the argument of ϕ in the pullback, while

at first one might intuitively think it should have been. There are several reasons this

is so. First notice that this

ξ̌x,ut (ω) = ξx,ut (θ−tω) , ∀(t, ω) ∈ T>0 × Ω .

So ξ̌x,u is just the pullback, in the sense of Definition 2.56, of the θ-stochastic process

ξx,u. However we are more concerned with what happens in the context of “cascades”

and “feedback interconnections” of RDSIO. So, this issue asks for further scrutiny. But

before we get deep into it, we first discuss discrete RDSIO. This will further motivate

axioms (I1)–(I5) in the definition of an RDSI, produce—and completely characterize—

a whole class of examples, and provide the framework for said discussion of pullback

trajectories and cascades.

We say that an RDSI (or RDSIO) is discrete when T = Z. A notable class of discrete

RDSI is the class of RDSI generated by “random difference equations with inputs,” the

discrete-time object analogous to RDEI which we now describe.

Definition 3.23 ((Random) Transition Maps). A (F ⊗ B ⊗ B(U))-measurable map

f : Ω×X × U → X will be said to be a (random) transition map if
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(T) f(ω, ·, ũ) : X −→ X is continuous for each (ω, ũ) ∈ Ω× U . 4

Given a transition map f and a class of θ-inputs U , we say that a map ϕ : T>0 ×

Ω×X × U → X is a solution of the random difference equation with inputs (RdEI )

ξ+ = f(θnω, ξ, un(ω)) , n > 0 , ω ∈ Ω , u ∈ U ,

if

ϕ(0, ω, x, u) = x , ∀(ω, x, u) ∈ Ω×X × U ,

and

ϕ(n+ 1, ω, x, u) = f(θnω, ϕ(n, ω, x, u), un(ω))

for every (n, ω, x, u) ∈ T>0 × Ω×X × U .

Theorem 3.24 (Random Difference Equations with Inputs). Let θ be an MPDS, U be

a class of θ-inputs, and f a transition map. Then the RdEI

ξ+ = f(θnω, ξ, un(ω)) , n > 0 , ω ∈ Ω , u ∈ U , (3.6)

has a unique solution ϕ : T>0×Ω×X×U → X. Furthermore, the ordered triple (θ, ϕ,U)

is an RDSI. (In this case we refer to the map f as the generator of the RDSI (θ, ϕ,U).)

Proof. Define ϕ : T>0 × Ω×X × U → X recursively by

ϕ(0, ω, x, u) := x , (ω, x, u) ∈ Ω×X × U , (3.7)

and

ϕ(n+1, ω, x, u) := f(θnω, ϕ(n, ω, x, u), un(ω)) , (n, ω, x, u) ∈ T>0×Ω×X×U . (3.8)

Thus ϕ is a solution of (3.6). It is uniquely determined by its state at n = 0 in (3.7)

and the inductive process in (3.8).

It remains to show that (θ, ϕ,U) is an RDSI. We shall check (I1), (I2), (I3), (I5)

and (I4) in this order.

(I1) Fix arbitrarily u ∈ U . One first shows, using induction on n > 1, that

ϕ(n, ·, ·, u) = f(θn−1·, ϕ(n− 1, ·, ·, u), un−1(·)) (3.9)
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is (F ⊗ B)-measurable for each n > 1. Indeed, at n = 1 we have

ϕ(1, ·, ·, u) = f(θ1−1·, ϕ(1− 1, ·, ·, u), u1−1(·)) = f(·, ·, u0(·)) ,

which is (F ⊗ B)-measurable, since f is (F ⊗ B ⊗ B(U))-measurable and u0 is F-

measurable. The inductive step follows straight from (3.9), since the righthand side is

a composition of measurable functions and, hence, itself measurable.

Now pick any A ∈ B. We then have

ϕ(·, ·, ·, u)−1(A) =
∞⋃
n=0

{n} × ϕ(n, ·, ·, u)−1(A) ∈ 2Z>0 ⊗F ⊗ B ,

since it is a countable union of (2Z>0 ⊗F ⊗B)-measurable sets. Since A ∈ B and u ∈ U

were chosen arbitrarily, this proves that (I1) holds.

(I2) This follows from (T), (3.7) and (3.8), again by induction. Fix arbitrarily ω ∈ Ω

and u ∈ U . At n = 0, it follows straight from (3.7) that ϕ(0, ω, ·, u) is continuous. So,

once (I2) has been proved for a certain value of n > 0, we conclude from (T) and (3.8)

that

ϕ(n+ 1, ω, ·, u) = f(θnω, ϕ(n, ω, ·, u), un(ω))

is also continuous. This completes the induction, proving (I2).

(I3) This is the same as (3.7).

(I5) This is shown, once again, by induction. Fix ω ∈ Ω and x ∈ X arbitrarily. The

base of the induction is given by (3.7). Now assume (I5) holds for a certain value of

t = n > 0. If u, v ∈ U are such that

uj(ω) = vj(ω) , ∀j = 0, 1, . . . , n ,

then

ϕ(n, ω, x, u) = ϕ(n, ω, x, v)

by the induction hypothesis. So, it follows from (3.8) that

ϕ(n+ 1, ω, x, u) = f(θnω, ϕ(n, ω, x, u), un(ω))

= f(θnω, ϕ(n, ω, x, v), vn(ω))

= ϕ(n+ 1, ω, x, v) .
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This proves (I5).

(I4) Fix ω ∈ Ω, x ∈ X, u, v ∈ U and p > 0 arbitrarily. We use induction on n to

show that

ϕ(n+ p, ω, x, u♦pv) = ϕ(n, θpω, ϕ(p, ω, x, u), v) , ∀n > 0 . (3.10)

For n = 0, (3.10) holds in virtue of (I3) and (I5). Indeed, we have

(u♦pv)j(ω) = uj(ω) , ∀j = 0, . . . , p− 1 ,

therefore

ϕ(0 + p, ω, x, u♦pv) = ϕ(p, ω, x, u) = ϕ(0, θpω, ϕ(p, ω, x, u), v) .

Now suppose (3.10) holds for some n > 0. Set y := ϕ(p, ω, x, u). By the induction

hypothesis,

ϕ(n, θpω, y, v) = ϕ(n+ p, ω, x, u♦pv) .

Hence

ϕ(n+ 1, θpω, y, v) = f(θnθpω, ϕ(n, θpω, y, v), vn(θpω))

= f(θn+pω, ϕ(n+ p, ω, x, u♦pv), (u♦pv)n+p(ω))

= ϕ(n+ p+ 1, ω, x, u♦pv) .

(3.10) then follows by induction. Since ω ∈ Ω, x ∈ X, u, v ∈ U and p > 0 were chosen

arbitrarily, this establishes (I4), completing the proof that (θ, ϕ,U) is an RDSI.

From the construction of a discrete RDSI (θ, ϕ,U) from a transition map f above,

it is clear how the value of the flow ϕ at time n + 1, when subject to ω, depends on

the input u through its value un(ω) at time n. So, when one shifts the ω-argument of

ϕ in the pullback trajectory to θ−nω, there is no need to modify the input; the value

of ϕ(n, θ−nω, x(θ−nω), u) will automatically depend on un(θ−nω) already. This is the

second reason we defined the pullback trajectories of RDSI as we did.

We now discuss the third and most important reason this is the mathematically

sensible way of defining pullback trajectories for RDSI.
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Consider the topological product Z := X1×X2 of two Polish spaces X1 and X2, let

g : Ω × Z −→ Z be a transition map, and let (θ, ψ) be the discrete RDS generated by

g. Now suppose g can be written as

g(ω, (x1, x2)) ≡

 f1(ω, x1)

f2(ω, x2, h1(ω, x1))

 , (3.11)

where f1 : Ω×X1 → X1 is the generator of some RDS (θ, ϕ1), h1 : Ω×X1 → Y1 is an

output function, thus yielding an RDSO (θ, ϕ1, h1), and f2 : Ω×X2 × U2 → X2 is the

generator of some RDSI (θ, ϕ2,U2) with input space U2 = Y1. We use η1 to denote the

output trajectories of (θ, ϕ1, h1), ξ for the state trajectories of ψ, and ξ2 for the state

trajectories of (θ, ϕ2,U2). Finally, let π2 : X1 × X2 → X2 be the projection onto the

second coordinate.

Proposition 3.25. For any random initial state

z = (x1, x2) ∈ ZΩ
B(Z) = (X1)Ω

B(X1) × (X2)Ω
B(X2) ,

the following two identities hold.

(1) ψ(n, ω, z(ω)) ≡

 ϕ1(n, ω, x1(ω))

ϕ2(n, ω, x2(ω), (η1)x1)

, and

(2) π2(ξ̌zn(ω)) ≡ (ξ̌2)
x2,(η1)x1

n (ω).

Proof. (1) For each arbitrarily fixed ω ∈ Ω and z = (x1, x2) ∈ ZΩ
B(Z), we use induction

on n > 0. At n = 0, it follows from (S2)/(I3) that

ψ(0, ω, z(ω)) = z(ω) =

x1(ω)

x2(ω)

 =

 ϕ1(0, ω, x1(ω))

ϕ2(0, ω, x2(ω), (η1)x1)

 .

Now suppose that (1) holds for some n > 0. Since

(η1)x1
n (ω) = h1

(
θnω, ϕ1(n, ω, x1(ω))

)
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by definition, it follows that

ψ(n+ 1, ω, z(ω)) = g
(
θnω, ψ(n, ω, z(ω))

)
=

 f1

(
θnω, ϕ1(n, ω, x1(ω))

)
f2(θnω, ϕ2(n, ω, x2(ω), (η1)x1), (η1)x1

n (ω))


=

 ϕ1(n+ 1, ω, x1(ω))

ϕ2(n+ 1, ω, x2(ω), (η1)x1)

 .

This completes the induction.

(2) We prove by induction that (2) holds, for each n > 0, for all random initial

states z = (x1, x2) ∈ ZΩ
B(Z), and all ω ∈ Ω. At n = 0, we have

π2(ξ̌z0(ω)) = π2

(
ψ(0, ω, z(ω))

)
= π2(x1(ω), x2(ω))

= x2(ω)

= ϕ2(0, ω, x2(ω), (η1)x1)

= (ξ̌2)
x2,(η1)x1

0

for any z = (x1, x2) ∈ ZΩ
B(Z) and any ω ∈ Ω.

Now assume (2) has been shown to hold for all nonnegative integer values of n up

to some n0 > 0, for all random initial states z = (x1, x2) ∈ ZΩ
B(Z) and all ω ∈ Ω. Given

z = (x1, x2) ∈ ZΩ
B(Z), define ẑ = (x̂1, x̂2) ∈ ZΩ

B(Z) by

ẑ(ω) := g(θ−1ω, z(θ−1ω))

=

 f1(θ−1ω, x1(θ−1ω))

f2

(
θ−1ω, x2(θ−1ω), h1(θ−1ω, x1(θ−1ω))

)
 , ω ∈ Ω .

(3.12)
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Fix ω ∈ Ω arbitrarily and denote ω̂ := θ−(n0+1)ω. Then

π2(ξ̌zn0+1(ω)) = π2

(
ψ(n0 + 1, ω̂, z(ω̂))

)
= π2

(
ψ
(
n0, θ−n0ω, ψ(1, ω̂, z(ω̂))

))
= π2

(
ψ
(
n0, θ−n0ω, g(ω̂, z(ω̂))

))
= π2

(
ψ(n0, θ−n0ω, ẑ(θ−n0ω))

)
= π2(ξ̌ẑn0

(ω))

= (ξ̌2)
x̂2,(η1)x̂1

n0 (ω)

by the induction hypothesis. Now

h1(ω̂, x1(ω̂)) = (η1)x1
0 (ω̂) ,

and

(η1)x̂1 = ρ1((η1)x1)

by Lemma 3.26 below, thus

(ξ̌2)
x̂2,(η1)x̂1

n0 (ω) = ϕ2(n0, θ−n0ω, x̂2(θ−n0ω), (η1)x̂1)

= ϕ2(n0, θ−n0ω, f2(ω̂, x2(ω̂), (η1)x1
0 (ω̂)), (η1)x̂1)

= ϕ2(n0, θ−n0ω, ϕ2(1, ω̂, x2(ω̂), (η1)x1), ρ1((η1)x1))

= ϕ2(n0 + 1, θ−(n0+1)ω, x2(θ−(n0+1)ω), (η1)x1)

= (ξ̌2)
x2,(η1)x1

n0+1 (ω) .

So,

π2(ξ̌zn0+1(ω)) = (ξ̌2)
x2,(η1)x1

n0+1 (ω) .

Since z = (x1, x2) ∈ ZΩ
B(Z) and ω ∈ Ω were arbitrary, this completes the inductive step,

thus proving (2).

The lefthand side of (2) in the proposition above is the projection over the second

coordinate of the pullback trajectory starting at z = (x1, x2) of the RDS (θ, ψ). The

righthand side is the pullback trajectory of the RDSI (θ, ϕ2,U2) starting at x2 and sub-

ject to the input (η1)x1 , the output trajectory of (θ, ϕ1, h1) starting at x1. Proposition

3.25 then says that they coincide.
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An analogous result holds in continuous time for systems generated by RDEI. The

same principle also applies to more complicated RDS or RDSI which can be decomposed

as the cascade/feedback interconnection of two or more coordinate RDS or RDSI.

We now state and prove the technical lemma referred to in the proof of item (2) in

Proposition 3.25.

Lemma 3.26. Let f : Ω × X → X be the generator of a discrete RDS (θ, ϕ) and

h : Ω ×X → Y an output function—thus yielding an RDSO (θ, ϕ, h). Given x ∈ XΩ
B ,

define x̂ ∈ XΩ
B by

x̂(ω) := f(θ−1ω, x(θ−1ω)) , ω ∈ Ω .

Then ηx̂ = ρ1(ηx).

Proof. Indeed, we have

ηx̂n(ω) = h
(
θnω, ϕ(n, ω, x̂(ω))

)
= h

(
θnω, ϕ

(
n, ω, f(θ−1ω, x(θ−1ω))

))
= h

(
θnω, ϕ

(
n, ω, ϕ(1, θ−1ω, x(θ−1ω))

))
= h

(
θn+1θ−1ω, ϕ(n+ 1, θ−1ω, x(θ−1ω))

)
= ηxn+1(θ−1ω)

= (ρ1(ηx))n(ω)

for every n > 0 and every ω ∈ Ω.

3.2.2 Measurability Properties

Definition 3.27 (Tails). Let (θ, ϕ,U) be an RDSI. Given a random initial state x ∈ XΩ
B ,

an input u ∈ U and a starting time τ > 0, we define the tail (from moment τ) of the

pullback trajectory starting at x and subject to u to be the multivalued function

γτx,u : Ω −→ 2X\{∅}

ω 7−→ {ϕ(t, θ−tω, x(θ−tω), u) ; t > τ} .

We refer to γ0
x,u as the pullback orbit starting from x and subject to u. 4
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Proposition 3.28. If (θ, ϕ,U) is an RDSI evolving on a Polish space (X, d) and the

underlying probability space (Ω,F ,P) of θ is complete, then γτx,u is a random set for

every τ > 0, for any random initial state x ∈ XΩ
B and any input u ∈ U .

Proof. The proof is essentially the same as the proof of Proposition 1.5.1 in [8]. Fix

x ∈ XΩ
B , u ∈ U , τ > 0 and y ∈ X arbitrarily. We want to show that

ω 7−→ dist(y, γτx,u(ω)) , ω ∈ Ω ,

is Borel-measurable. Note that

dist(y, γτx,u(ω)) = inf
t>τ

g(t, ω) , ∀ω ∈ Ω ,

where g : Ω× T>0 → R>0 is defined by

g(t, ω) := d(y, ϕ(t, θ−tω, x(θ−tω), u)) , (t, ω) ∈ T>0 × Ω .

Observe that g is (B(T>0) ⊗ F)-measurable, since it is a composition of measurable

functions. So

g−1([0, a)) ∈ F , ∀a > 0 .

Then{
ω ∈ Ω ; dist(y, γτx,u(ω)) < a

}
=

{
ω ∈ Ω ; inf

t>τ
g(t, ω) < a

}
= projΩ{(t, ω) ∈ T>0 × Ω ; g(t, ω) < a and t > τ}

= projΩ
(
g−1([0, a)) ∩ [τ,∞)× Ω

)
is measurable by the Measurable Projection Theorem (Proposition 2.21) for any a > 0.

This proves the result.

We emphasize the need that X be a Polish space and (Ω,F ,P) be complete so we can

apply the Measurable Projection Theorem. Of course if we did not assume (Ω,F ,P) to

be complete it would still have been true that γτx,u is a (Ω,Fu)-random set.
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3.3 Input to State Characteristics

It turns out that, in a sense we shall make precise in the next subsection, an RDSI

evolving subject to a θ-stationary input looks like an RDS. This section is devoted

to the study of this situation. We will be particularly interested in RDSI with the

property that, for each θ-stationary input, the corresponding RDS has a unique, globally

attracting equilibrium.

3.3.1 θ-Stationary Inputs

The concept of RDSI subsumes that of an RDS, as we shall see below. Denote the

subset of SUθ consisting of θ-stationary inputs by S̄Uθ . We identify S̄Uθ and UΩ
B via

Lemma 2.8.

Let (θ, ϕ,U) be a RDSI, and suppose that ū ∈ U ∩ S̄Uθ is some θ-stationary input.

Consistent with the convention that an overbar is used to indicate the θ-stationary

process associated with a given random variable, we remove the bar to denote the

random variable associated with a given θ-stationary process. So, we denote by u the

random variable in UΩ
B associated, via Lemma 2.8, with ū. We then define

ϕu := ϕ(·, ·, ·, ū) : T>0 × Ω×X −→ X .

Lemma 3.29. ϕu is a crude cocycle.

Proof. It follows from (I1) that ϕu is (B(T>0)⊗F⊗B)-measurable. From (I2), ϕu(t, ω, ·)

is continuous for each (t, ω) ∈ T>0 × Ω, yielding (S1). From (I3), we know that

ϕu(0, ω, ·) = idX for every ω ∈ Ω. So, to verify (S2′) it remains to prove that ϕu

satisfies the “crude cocycle property.” Let Ω̃ ⊆ Ω be a θ-invariant subset of full mea-

sure such that

[ρs(ū)]t(ω) = ūt(ω) , ∀ω ∈ Ω̃ , ∀s, t > 0 . (3.13)

Fix arbitrarily ω ∈ Ω̃. For any s, t > 0, we have θsω ∈ Ω̃ by θ-invariance, and so it

follows from (3.13) and (I5) that

ϕ(t, θsω, ϕu(s, ω, x), ρs(ū)) = ϕ(t, θsω, ϕu(s, ω, x), ū) .
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It then follows from (I4)—see Remark 3.17—that

ϕu(t+ s, ω, x) = ϕ(t+ s, ω, x, ū)

= ϕ(t, θsω, ϕ(s, ω, x, ū), ρs(ū))

= ϕ(t, θsω, ϕu(s, ω, x), ū)

= ϕu(t, θsω, ϕu(s, ω, x)) .

We conclude that (S2′) is satisfied with Ωs := Ω̃ for every s > 0.

Proposition 3.30. ϕu can be perfected.

Proof. Let Ω̃ be the θ-invariant subset of full measure of Ω from the proof of Lemma

3.29, and denote N := Ω\Ω̃. Thus N is θ-invariant and P(N) = 0. Define ψu : T>0 ×

Ω×X → X by

ψu(t, ω, x) :=


ϕu(t, ω, x) , if ω ∈ Ω̃ ,

x , if ω ∈ N .

(3.14)

We will show that ψu is a perfection of ϕu.

To verify measurability, pick any open subset A ⊆ X. Then

ψ−1
u (A) =

(
ϕ−1
u (A)\(T>0 ×N ×X)

)
∪ T>0 ×N ×A .

Thus ψ−1
u (A) ∈ B(T>0)⊗F ⊗ B, proving that ψu is (B(T>0)⊗F ⊗ B)-measurable.

If ω ∈ Ω̃, then ψu(t, ω, ·) = ϕu(t, ω, ·) = ϕ(t, ω, ·, u), which is continuous for any

t > 0 by (I2). And if ω ∈ N , then ψu(t, ω, ·) = idX , and thus also continuous for any

t > 0. This shows ψu satisfies (S1).

It is clear from (3.14) and (I3) that ψu(0, ω, ·) = idX for any ω ∈ Ω. We already

know from the proof of Lemma 3.29 that ψu satisfies the cocycle property for every

ω ∈ Ω̃. For ω ∈ N , it follows from θ-invariance and (3.14) that

ϕ(t+ s, ω, x) = x

= ϕ(t, θsω, x)

= ϕ(t, θsω, ϕ(s, ω, x)) , ∀t, s > 0 , ∀x ∈ X .

This completes the proof of (S2), thus completing the proof that (θ, ψu) is an RDS.



86

Finally, since

{ω ∈ Ω ; ϕu(t, ω) 6= ψu(t, ω) , for some t > 0} ⊆ N

and P(N) = 0, we conclude that ϕu and ψu are indistinguishable (see Definition 3.11).

This completes the proof that ψu is a perfection of ϕu.

Remark 3.31. We emphasize that the perfection of ϕu constructed in Proposition 3.30

(1) does not depend on whether T is discrete or continuous and (2) does not require

additional topological properties for the state space X (contrast with Proposition 3.13).

In particular, Proposition 3.30 would still hold in continuous time even if X was an

infinite-dimensional space. As noted before, this ad hoc construction was only possible

in virtue of the fact that the subset Ns := Ω\Ωs on which the cocycle property does

not hold is contained in a θ-invariant subset N of probability zero of Ω. �

Given an RDSI (θ, ϕ,U) and a θ-stationary input u ∈ U , we shall always assume

that ϕu has already been replaced by an indistinguishable perfection, and then refer to

the resulting RDS (θ, ϕu).

3.3.2 Input to State Characteristics

Let (θ, ϕ,U) be an RDSI and suppose that ū ∈ U is a θ-stationary process, with

generating random variable u (refer to Lemma 2.8). Any equilibrium ξ of the RDS

(θ, ϕu) will be referred to as an equilibrium associated to ū (or to u). The set of all

equilibria associated to ū (or to u) is denoted as E(ū) (we may also write E(u)). Thus,

in other words, an element ξ ∈ E(ū) is a random variable Ω→ X such that

ϕu(t, θ−tω, ξ(θ−tω)) = ξ(ω) , ∀̃ω ∈ Ω , ∀t > 0 . (3.15)

For deterministic systems—when Ω is a singleton and we may identify the set of

θ-inputs U with the input space U—, if the set E(ū) consists of a single, globally

attracting equilibrium, then the mapping u 7→ E(ū), u ∈ U , is the object known

as the “input to state characteristic” in the literature on input/output systems. For

systems with outputs, composition with the output map h provides the “input to output
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characteristic” [3]. One of the contributions of this work is the extention of these

concepts to RDSI and RDSIO.

In this section we introduce the notion of input to state characteristics for RDSI

and discuss a class of examples. Systems with outputs will be considered in greater

detail in the next chapter.

For reasons which will be illustrated in Example 3.34 and become clearer in the

proof of Theorem 4.11 (“converging input to converging state”), further conditions on

the convergence to a globally attracting equilibrium are needed.

Definition 3.32. (I/S Characteristic) An RDSI (θ, ϕ,U) is said to have an input to

state (i/s ) characteristic K : UΩ
θ → XΩ

θ if

UΩ
θ ⊆ U

and

ξ̌x,ut −→θ K(u) as t→∞ ,

for every x ∈ XΩ
θ , for every u ∈ UΩ

θ . 4

Example 3.34 below illustrates the concepts of tempered RDSI (Definition 3.19) and

i/s characteristics (Definition 3.32 above). Temperedness features in said example will

be a special case (with p = 1 or p =∞) of the general result below.

Proposition 3.33. Suppose r : Ω → R>0 is a tempered random variable. For each

γ > 0 and each p ∈ [1,∞], the map

ω 7−→ ‖r(θ·ω) e−γ|·| ‖Lp(R) , ω ∈ Ω ,

is a tempered random variable. Moreover, temperedness bounds are uniform in p ∈

[1,∞]; that is, for each γ > 0 and each δ > 0,

sup
p∈[1,∞]

sup
s∈R
‖r(θ·θsω) e−γ|·| ‖Lp(R) e−δ|s| <∞ , ∀̃ω ∈ Ω .

Proof. For each γ > 0, set

Kγ,ω := sup
s∈R

r(θsω) e−γ|s|
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for every ω ∈ Ω such that the supremum above is finite. Since r is tempered by

assumption, this will hold true for θ-almost all ω ∈ Ω.

Fix arbitrarily γ > 0 and choose any δ > 0. We consider two different cases.

(Case 1 6 p <∞) Setting m := min{γ, δ} > 0 and using the triangle inequality, we

obtain

‖r(θ·θsω) eγ|·| ‖Lp(R) e−δ|s| =

(∫ ∞
−∞

[r(θt+sω) e−γ|t|−δ|s|]p dt

)1/p

6

(∫ ∞
−∞

[r(θt+sω) e−m|t+s|]p dt

)1/p

6

(∫ ∞
−∞

[r(θt+sω) e−
m
2
|t+s|]p e−

pm
2
|t+s| dt

)1/p

6 Km
2
,ω

(∫ ∞
−∞

e−
pm
2
|t+s| dt

)1/p

= Km
2
,ω

(
4
pm

)1/p

< ∞

for all s ∈ R, for θ-almost all ω ∈ Ω. In fact, since the map

p 7−→ Km
2
,ω

(
4

pm

)1/p

, 1 6 p <∞ , (3.16)

is continuous in p and

lim
p→∞

Km
2
,ω

(
4

pm

)1/p

= Km
2
,ω ,

we then conclude that the map in (3.16) is bounded. Thus

Mγ,δ,ω := sup
p∈[1,∞)

sup
s∈R
‖r(θ·θsω) e−γ|·| ‖Lp(R) e−δ|s| <∞ , ∀̃ω ∈ Ω .

(Case p =∞) The trick is basically the same as before. We have

‖r(θ·θsω) eγ|·| ‖L∞(R) e−δ|s| = sup
t∈R

r(θt+sω) e−γ|t|−δ|s|

6 sup
t∈R

r(θt+sω) e−m|t+s|

= Km,ω ,

which is finite for all s ∈ R, for θ-almost all ω ∈ Ω.

Combining both cases we conclude that

sup
p∈[1,∞]

sup
s∈R
‖r(θ·θsω) e−γ|·| ‖Lp(R) e−δ|s| = max{Mγ,δ,ω,Km,ω} ,
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which is finite for θ-almost all ω ∈ Ω. Since γ, δ > 0 were chosen arbitrarily, this

completes the proof.

Example 3.34 (I/S Characteristics for RDSI Generated by Linear RDEI). Consider the

RDSI (θ, ϕ,SU∞) from Example 3.18, generated by the RDEI

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t > 0 , u ∈ SU∞ , (3.17)

where X = Rn, U = Rk, and A : Ω → Mn×n(R) and B : Ω → Mn×k(R) are random

matrices such that

t 7−→ ‖A(θtω)‖ , t > 0 ,

is locally integrable and

t 7−→ ‖B(θtω)‖ , t > 0 ,

is locally essentially bounded for every ω ∈ Ω. Now suppose in addition that A,B are

such that

(L1) B is tempered, and

(L2) there exist a λ > 0 and a nonnegative, tempered random variable γ ∈ (R>)Ω
θ

such that the fundamental matrix solution Ξ of the homogeneous part of (3.17)

satisfies

‖Ξ(s, s+ r, ω)‖ 6 γ(θsω) e−λr , ∀̃ω ∈ Ω , ∀s ∈ R , ∀r > 0 .

Then (θ, ϕ,SU∞) is tempered (in the sense of Definition 3.19) and has a continuous

i/s characteristic K : UΩ
θ → XΩ

θ (Definition 3.32). We will prove this in several steps,

indicated below.

Construction of K : UΩ
θ → XΩ

θ . We first claim that the limit

lim
t→∞

ξ̌x,ūt (ω) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ (3.18)

exists, for each x ∈ XΩ
θ and each u ∈ UΩ

θ , for θ-almost ω ∈ Ω. Let Φ and Ψ be as in

Example 3.18, so that we may write

ϕ(t, ω, x, u) ≡ Φ(t, ω, x) + Ψ(t, ω, u) .
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Then

ξ̌x,ūt (ω) ≡ Φ(t, θ−tω, x(θ−tω)) + Ψ(t, θ−tω, u) .

So, it is enough to show that

lim
t→∞

Φ(t, θ−tω, x(θ−tω)) = 0 , ∀x ∈ XΩ
θ , ∀̃ω ∈ Ω , (3.19)

and that

lim
t→∞

Ψ(t, θ−tω, ū) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ , ∀u ∈ UΩ

θ , ∀̃ω ∈ Ω . (3.20)

Fix arbitrarily x ∈ XΩ
θ and let ω ∈ Ω be such that

Kω,λ
2
,x := sup

s∈R
γ(θsω)|x(θsω)| e−

λ
2
|s| <∞ , (3.21)

where λ > 0 and γ nonnegative and tempered are given by (L2). Combining (L2) and

(3.21), we obtain

|Φ(t, θ−tω, x(θ−tω))| = |Ξ(0, t, θ−tω) · x(θ−tω)|

6 γ(θ−tω) e−λt |x(θ−tω)|

=
(
γ(θ−tω)|x(θ−tω)| e−

λ
2
|−t|
)

e−
λ
2
t

6 Kω,λ
2
,x e−

λ
2
t , ∀t > 0 .

Hence

|Φ(t, θ−tω, x(θ−tω))| −→ 0 as t→∞ .

Since Kω,λ
2
,x is finite for θ-almost all ω ∈ Ω—recall that, by Lemma 2.32(3), the product

of two tempered random variables is tempered—, this holds θ-almost everywhere. So

since x ∈ XΩ
θ was chosen arbitrarily, this proves (3.19).

Now fix arbitrarily u ∈ UΩ
θ . Then by Lemma 3.3(2) and a change of variables,

Ψ(t, θ−tω, ū) =

∫ t

0
Ξ(σ, t, θ−tω)B(θσ−tω)u(θσ−tω) dσ

=

∫ t

0
Ξ(σ − t, 0, ω)B(θσ−tω)u(θσ−tω) dσ

=

∫ 0

−t
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ , ∀t > 0 , ∀ω ∈ Ω .
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In virtue of (L2), for each ω ∈ Ω such that

Lω,λ
2
,u := sup

s∈R
γ(θsω)‖B(θsω)‖ · |u(θsω)| e−

λ
2
|s| <∞ , (3.22)

we have

|Ξ(σ, 0, ω)B(θσω)u(θσω)| 6 γ(θσω) e−λ|σ| ‖B(θσω)‖ · |u(θσω)|

6 Lω,λ
2
,u e−

λ
2
|σ| , ∀σ 6 0 .

Thus, since

σ 7−→ Lω,λ
2
,u e−

λ
2
|σ| , σ 6 0 ,

is integrable on (−∞, 0], so is

σ 7−→ Ξ(σ, 0, ω)B(θσω)u(θσω) , σ 6 0 .

In particular, it follows from dominated convergence that the limit

lim
t→∞

Ψ(t, θ−tω, ū) = lim
t→∞

∫ 0

−t
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ

=

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ

exists. Finally, observe that, for each u ∈ UΩ
θ , Lω,λ

2
,u as defined in (3.22) is finite for

θ-almost all ω ∈ Ω. This establishes (3.20).

We have then proved that (3.18) holds, for each x ∈ XΩ
θ and each u ∈ UΩ

θ , for

θ-almost all ω ∈ Ω.

Define K : UΩ
θ → XΩ

B by

[K(u)](ω) :=

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ , ω ∈ Ω .

It remains to show that K(UΩ
θ ) ⊆ XΩ

θ .

Indeed, fix u ∈ UΩ
θ arbitrarily. It follows from the estimate

|Ξ(σ, 0, ω)B(θσω)u(θσω)| 6 γ(θσω)‖B(θσω)‖ · |u(θσω)| e−λ|σ| , ∀̃ω ∈ Ω , ∀σ 6 0 ,

(3.23)

shown above, that

|[K(u)](ω)| 6
∫ 0

−∞
γ(θσω)‖B(θσω)‖ · |u(θσω)| e−λ|σ| dσ

6
∫ ∞
−∞

γ(θσω)‖B(θσω)‖ · |u(θσω)| e−λ|σ| dσ

= ‖(γ‖B‖ · |u|)(θ·ω) e−λ|·| ‖L1(R) , ∀̃ω ∈ Ω .
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From Proposition 3.33,

ω 7−→ ‖(γ‖B‖ · |u|)(θ·ω) e−λ|·| ‖L1(R) , ω ∈ Ω ,

is tempered. Thus K(u) : Ω→ X is also tempered.

K is an i/s characteristic. To show that K is an i/s characteristic, it remains to

show that the convergence in both (3.19) and (3.20) is tempered.

Fix x ∈ XΩ
θ arbitrarily. From the estimates above, we have

|Φ(t, θ−tω, x(θ−tω))| 6 γ(θ−tω)|x(θ−tω)| e−λt

6 sup
s∈R

γ(θsω)|x(θsω)| e−λ|s|

= ‖(γ|x|)(θ·ω) e−λ|·| ‖L∞(R) , ∀̃ω ∈ Ω , ∀t > 0 .

It follows from Proposition 3.33 (applied with p =∞) that

ω 7−→ ‖(γ|x|)(θ·ω) e−λ|·| ‖L∞(R) , ω ∈ Ω ,

is tempered. We conclude that convergence in (3.19) is tempered.

Similarly, for any arbitrarily fixed u ∈ UΩ
θ , we have

|Ψ(t, θ−tω, ū)− [K(u)](ω)| =

∣∣∣∣∫ −t
−∞

Ξ(σ, 0, ω)B(θσω) · u(θσω) dσ

∣∣∣∣
6

∫ ∞
−∞

γ(θσω)‖B(θσω)‖ · |u(θσω)| e−λ|σ| dσ

= ‖(γ‖B‖ · |u|)(θ·ω) e−λ|·| ‖L1(R)

for all t > 0, for θ-almost all ω ∈ Ω. As we saw above, the rightmost term in these

inequalities is a tempered random variable. So the convergence in (3.20) is also tem-

pered.

K is continuous. Suppose that uα →θ u∞ ∈ UΩ
θ for some net (uα)α∈A in UΩ

θ . Let

α0 ∈ A and r ∈ (R>0)Ω
θ be such that

|uα(ω)− u∞(ω)| 6 r(ω) , ∀̃ω ∈ Ω , ∀α > α0 . (3.24)



93

Then it follows from (3.24) and (3.23)—with ‘|u|’ replaced by ‘r,’ that

|[K(uα)](ω)− [K(u∞)](ω)| =

∣∣∣∣∫ 0

−∞
Ξ(σ, 0, ω)B(θσω) · (uα(θσω)− u∞(θσω)) dσ

∣∣∣∣
6

∫ ∞
−∞

γ(θσω)‖B(θσω)‖r(θσω) e−λ|σ| dσ

= ‖(γ‖B‖r)(θ·ω) e−λ|·| ‖L1(R)

for every α > α0, for θ-almost all ω ∈ Ω. As above,

ω 7−→ ‖(γ‖B‖r)(θ·ω) e−λ|·| ‖L1(R) , ω ∈ Ω ,

is tempered. Since

|uα(ω)− u∞(ω)| −→ 0 as α→∞ , ∀̃ω ∈ Ω ,

it follows from θ-invariance that

|uα(θσω)− u∞(θσω)| −→ 0 as α→∞ , ∀̃ω ∈ Ω , ∀σ 6 0 .

It then follows from dominated convergence, as in the proof of (3.20), that

|(K(uα))(ω)− (K(u∞))(ω)| −→ 0 as α→∞ , ∀̃ω ∈ Ω ,

as well. This shows that K(uα) →θ K(u∞). Since u∞ ∈ UΩ
θ and the net (uα)α∈A

converging to u∞ were arbitrary, this proves K is (tempered) continuous.

ϕ is tempered. The argument here goes along the same lines of what we have been

doing throughout this example. Fix arbitrarily any tempered input u ∈ SU∞ and any

tempered initial state x ∈ XΩ
θ . When we were showing that K is an i/s characteristic,

we saw that

|Φ(t, θ−tω, x(θ−tω))| 6 r1(ω) , ∀̃ω ∈ Ω , ∀t > 0 ,

where r1 : Ω→ R>0 is a tempered random variable defined by

r1(ω) := ‖(γ|x|)(θ·ω) e−λ|·| ‖L∞(R) , ω ∈ Ω .

Now let D ∈ (2U )Ω
θ be a (tempered) rest set for u, and let r ∈ (R>0)Ω

θ be such that

D(ω) ⊆ {u ∈ U ; ‖u‖ 6 r(ω)} , ∀̃ω ∈ Ω .
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Thus, indeed,

‖ut(θ−tω)‖ 6 r(ω) , ∀̃ω ∈ Ω , ∀t > 0 .

Therefore

|Ψ(t, θ−tω, u)| =

∣∣∣∣∫ t

0
Ξ(σ − t, 0, ω)B(θσ−tω)uσ(θ−σθσ−tω) dσ

∣∣∣∣
6

∫ t

0
‖Ξ(σ − t, 0, ω)B(θσ−tω)‖ · r(θσ−tω) dσ

=

∫ 0

−t
‖Ξ(σ, 0, ω)B(θσω)‖r(θσω) dσ

6
∫ ∞
−∞

γ(θσω)‖B(θσω)‖r(θσω) e−λ|σ| dσ

= ‖(γ‖B‖r)(θ·ω) e−λ|·| ‖L1(R) , ∀̃ω ∈ Ω , ∀t > 0 .

Denote

r2(ω) := ‖(γ‖B‖r)(θ·ω) e−λ|·| ‖L1(R) , ω ∈ Ω .

The map r2 : Ω→ R>0 so-defined is tempered. Now r1+r2 is tempered, and furthermore

|ξ̌x,ut (ω)| = |ϕ(t, θ−t, x(θ−tω), u)| 6 r1(ω) + r2(ω) , ∀̃ω ∈ Ω , ∀t > 0 .

In other terms, ξx,u is tempered. Since the tempered θ-input u and the tempered initial

state x were chosen arbitrarily, this completes the proof that ϕ is indeed a tempered

cocycle. ♦

Remark 3.35. If ‖A(·)‖ ∈ L1(Ω,F ,P), the largest eigenvalue λ(·) of the Hermitian part

of A(·) is such that

Eλ :=

∫
Ω
λ(ω) dP(ω) < 0 ,

and the underlying MPDS θ is ergodic, then it follows from [8, Theorem 2.1.2, page 60]

that (L2) holds with λ := −(Eλ+ ε) for any choice of ε ∈ (0,−Eλ). �

Remark 3.36. We showed in the example above that

|Φ(t, θ−tω, x(θ−tω))| −→ 0 as t→∞ , ∀̃ω ∈ Ω ,

for every tempered initial state x ∈ (Rn)Ω
θ . To further illustrate the role of temperedness

in the above convergence, we consider the one-dimensional scenario below.
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Suppose that a, b : Ω → R are random variables such that t 7→ b(θtω), t ∈ R, is

absolutely continuous, and

a(θtω) =
d

dt
[b(θtω)]

for Lebesgue-almost all t ∈ R, for every ω ∈ Ω. In this case, the RDS (θ,Φ) generated

by the linear RDE

ξ̇ = a(θtω)ξ , t > 0 ,

is given by

Φ(t, ω, x) = x e
∫ t
0 a(θτω) dτ = x eb(θtω)−b(ω) , (t, ω, x) ∈ R>0 × Ω× R .

Now for each c ∈ R, the random variable xc : Ω→ R defined by

xc(ω) := c eb(ω) , ω ∈ Ω ,

is an equilibrium of (θ,Φ). Indeed,

Φ(t, θ−tω, xc(θ−tω)) = xc(θ−tω) eb(θtθ−tω)−b(θ−tω)

= c eb(θ−tω) eb(ω)−b(θ−tω)

= c eb(ω)

= xc(ω) , ∀ω ∈ Ω .

In particular, (θ,Φ) has multiple equilibria. In virtue of the example above, if a belongs

to L1(Ω,F ,P) and E[a] < 0, then xc ≡ 0 is the only such equilibria which is also

tempered. �

3.4 More Examples

In this last section, we present a few more examples of RDSI.

In the first subsection, we discuss the discrete-time analogues of Examples 3.2, 3.18

and 3.34. This is followed by some explicit examples and a few numerical simulations.

In Subsection 3.4.2 we give sufficient conditions for an RDEI to generate an RDSI—a

continuous-time analogue of Theorem 3.24.
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3.4.1 Discrete Time

We start by outlining the discrete-time analogue of the program developed for RDEI

in Examples 3.2, 3.18 and 3.34.

Example 3.37 (I/S Characteristics for RDSI Generated by Linear RdEI). Fix any dis-

crete MPDS θ (that is, T = Z). Let X := Rn, U := Rk, U := SUθ , and suppose that

A : Ω → Mn×n(R) and B : Ω → Mn×k(R) are Borel-measurable. Applying Theorem

3.24 with

f : Ω×X × U −→ X

(ω, x, u) 7−→ A(ω)x+B(ω)u

,

we conclude that the random difference equation with inputs

ξ+ = A(θnω)ξ +B(θnω)un(ω) , n > 0 , ω ∈ Ω , u ∈ SUθ , (3.25)

generates an RDSI (θ, ϕ,U). Indeed, we can show by induction that

ϕ(n, ω, x, u) ≡

n−1∏
j=0

A(θjω)

x+
n−1∑
j=0

 n−1∏
k=j+1

A(θkω)

B(θjω)uj(ω) , (3.26)

and that the pullback trajectories are given by

ϕ(n, θ−nω, x(θ−nω), u) ≡

 −1∏
j=−n

A(θjω)

x(θ−nω)

+
−1∑

j=−n

 −1∏
k=j+1

A(θkω)

B(θjω)uj+n(θ−nω) .

We denote

Ξ(s, s+ r, ω) :=

s+r−1∏
j=s

A(θjω) , s ∈ Z , r > 0 , ω ∈ Ω ,

following the convention that, when r = 0, the “empty product” from s to s−1 evaluates

to

Ξ(s, s, ω) =

s−1∏
j=s

A(θjω) := In , s ∈ Z .

Note that we are using the same notation we used for the fundamental solution of

linear RDE (Example 3.2) for the “fundamental solution” of the linear part of (3.25).

But since we shall not consider “mixed-time systems” in this work, there is not risk of
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confusion. It should be always clear from the context what we mean by ‘Ξ.’ Using this

notation, we may rewrite the forward and pullback flow as

ϕ(n, ω, x, u) ≡ Ξ(0, n, ω)x+

n−1∑
j=0

Ξ(j + 1, n, ω)B(θjω)uj(ω)

and

ϕ(n, θ−nω, x(θ−nω), u) ≡ Ξ(−n, 0, ω)x(θ−nω) +
−1∑

j=−n
Ξ(j + 1, 0, ω)B(θjω)uj+n(θ−nω)

Now suppose that A and B have, in addition, properties

(l1) B is tempered, and

(l2) there exist a λ ∈ (0, 1) and a nonnegative, tempered random variable γ : Ω→ R>0

such that ∥∥∥∥∥∥
s+r−1∏
j=s

A(θjω)

∥∥∥∥∥∥ 6 γ(θsω)λr , ∀̃ω ∈ Ω , ∀s ∈ Z , ∀r > 0 .

Then the RDSI (θ, ϕ,U) constructed above is tempered, and has a continuous i/s char-

acteristic K : UΩ
θ → XΩ

θ ,

[K(u)](ω) =
−1∑

j=−∞
Ξ(j + 1, 0, ω)B(θjω)u(θjω) , ∀u ∈ UΩ

θ , ∀̃ω ∈ Ω .

This follows from (l1) and (l2), along the same lines as in Example 3.34, and so we

omit the details. ♦

We now give a few explicit examples and numerical simulations fitting within this

setting.

Example 3.38 (Cantor Set). Let θ be the Bernoulli shift of the probability space

(Ω0,F0,P0) ,

where Ω0 := {0, 1}, F0 := 2Ω0 , and P0 : F0 → [0, 1] is defined by

P0({0}) :=
1

2
, P0({1}) :=

1

2
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(refer to Example 2.2). Take X := R>0, U := [0, 1], and consider the discrete RDSI

(θ, ϕ,SUθ ) generated by the RdEI

ξ+ =
1

3
ξ +

2

3
un(ω) , n > 0 , ω ∈ Ω , u ∈ SUθ .

Note that the coefficients satisfy (l1) and (l2), so it follows from Example 3.37 that ϕ

has an i/s characteristic K : UΩ
θ → XΩ

θ given by

[K(u)](ω) =
−1∑

j=−∞

2u(θjω)

3−j
=
∞∑
j=1

2u(θ−jω)

3j
, ω ∈ Ω , u ∈ UΩ

θ .

Now consider the input v ∈ SUθ defined by

v(ω) = v((ωk)k∈Z) := ω0 , ω ∈ Ω .

We have

[K(v)](ω) =

∞∑
j=1

2ω−j
3j

, ∀ω ∈ Ω ,

and so K(v) is “uniformly distributed over the Cantor set” in the following sense: the

probability that K(v) belongs to an interval which was not removed in the nth step of

the construction of the Cantor set is 2−n for each n > 0. Indeed, for any nonnegative

integer n, any interval which was not removed in the nth step of the construction of the

Cantor set has the form

Ia1,...,an =

 n∑
j=1

aj
3j
,

n∑
j=1

aj
3j

+
1

3n

 =

 n∑
j=1

aj
3j
,

n∑
j=1

aj
3j

+
∞∑

j=n+1

2

3j


for some a1, . . . , an ∈ {0, 2}. Therefore [K(v)](ω) belongs to Ia1,...,an if, and only if

2ω−j = aj for j = 1, . . . , n. Now by construction

P({ω ∈ Ω ; ω−j = aj/2 , j = 1, . . . , n}) =

(
1

2

)n
(refer once again to Example 2.2). ♦

The construction in the example above can be extended to arbitrary finite dimen-

sions, thus yielding Cantor dusts. Figure 3.1 illustrates the pullback convergence to a

2-dimensional Cantor dust of a random variable which is uniformly distributed on the

unit square. Figure 3.25 illustrates the 3-dimensional Cantor dust.

5Negative of http://commons.wikimedia.org/wiki/File%3ACantors cube.jpg.
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

Figure 3.1: Pullback convergence of uniform distribution over the unit square to “uni-
form distribution” over the 2-dimensional Cantor dust.

Figure 3.2: 3-dimensional Cantor dust.

Example 3.39 (Barnsley Fern). Iterated function systems (IFS ), in the sense of [6,

Definition 1 on page 82], can be interpreted as RDS or RDSI. We use the classical

example of the Barnsley fern [6, Table 3.8.3 on page 87, and Figure 3.8.3 on page 92],
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Figure 3.3: Barnsley Fern

also illustrated here in Figure 3.3 below, to show how the Random Iteration Algorithm

[6, Program 3.8.2 on page 91] can be described as an RDSI. (See also [5].)

Let θ be the Bernoulli shift of the probability space (Ω0,F0,P0), where Ω0 :=

{1, 2, 3, 4}, F0 := 2Ω0 and P0 : F0 → [0, 1] is defined by

P0({1}) := 0.01 , P0({2}) := 0.85 , P0({3}) := 0.07 , P0({4}) := 0.07 .

Let X := R2 and U := [0, 1]× [0, 1], and consider the discrete RDSI (θ, ϕ,SUθ ) generated

by the RdEI

ξ+ = A(θnω)ξ + un(ω) , n > 0 , u ∈ SUθ ,

where A : Ω→M2×2(R) is defined as follows. First define A0 : Ω0 →M2×2(R) by

A0(1) :=

0 0

0 0.16

 ,

A0(2) :=

 0.85 0.04

−0.04 0.85

 ,
A0(3) :=

 0.2 −0.26

0.23 0.22
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and

A0(4) :=

−0.15 0.28

0.26 0.24

 .
Then define A by setting

A(ω) := A0(ω0) , ω ∈ Ω .

The largest singular values of A0(1), A0(2), A0(3) and A0(4) can be numerically

estimated to be, respectively,

σmax0 (1) = 0.16 ,

σmax0 (2) ≈ 0.8509 ,

σmax0 (3) ≈ 0.3407 ,

and

σmax0 (4) ≈ 0.3792 .

Now A(ω) = A0(ω0) and so the largest singular value of A(ω) is

σmax(ω) = σmax
0 (ω0)

for each ω ∈ Ω. Thus∥∥∥∥∥∥
s+r−1∏
j=s

A(θjω)

∥∥∥∥∥∥ 6 γλr , ∀ω ∈ Ω , ∀s ∈ Z , ∀r > 0 ,

where

λ := σmax0 (2) ∈ (0, 1) ,

and γ is a nonnegative constant depending only on the matrix norm6 ‖ · ‖. Thus A

satisfies (l2). So, it follows as in Example 3.37, with

B ≡

1 0

0 1


and the observation that all θ-inputs in SUθ are uniformly bounded, that ϕ has a con-

tinuous i/s characteristic K : UΩ
θ → XΩ

θ given by

[K(u)](ω) =
−1∑

j=−∞

 −1∏
k=j+1

A(θkω)

u(θjω) , ∀u ∈ UΩ
θ , ∀̃ω ∈ Ω .

6For instance, if ‖ · ‖ is the operator norm induced by the Euclidean norm in Rn, then γ = 1.
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(a) t = 6 (b) t = 10 (c) t = 18

Figure 3.4: Simulation of tempered, pullback convergence of ϕ to K(u), starting at
x = 0.

Now consider the θ-stationary input u ∈ UΩ
θ defined as follows. First define

u0(1) :=

0

0

 ,
u0(2) :=

 0

1.6

 ,
u0(3) :=

 0

1.6

 ,
and

u0(4) :=

 0

0.44

 .
Then set

u(ω) := u0(ω0) , ω ∈ Ω .

The support of the image of K(u) is the Barnsley fern. Figure 3.4 shows the results

after steps n = 6, n = 10 and n = 18 of a simulation of the pullback trajectories of ϕ

starting at x = 0, and subject to the input u defined above. ♦

Example 3.40 (Barnsley Fern to Maple Leaf). Let θ be the same MPDS as in Example

3.39, except for having instead

P0({1}) := 0.10 , P0({2}) := 0.35 , P0({3}) := 0.35 , P0({4}) := 0.20 .

Set

C0(1) :=

0.14 0.01

0 0.51

 ,
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C0(2) :=

 0.43 0.52

−0.45 0.5

 ,
C0(3) :=

0.45 −0.49

0.47 −1.62


and

C0(4) :=

0.49 0

0 0.51

 ,
then define C : Ω→M2×2(R) by

C(ω) := C0(ω0) , ω ∈ Ω ,

and consider the (discrete) RDSI (θ, ϕ,SUθ ) generated by the RdEI

ξ+ = C(θnω)ξ + un(ω) , n > 0 , u ∈ SUθ .

As in Example 3.39, the largest singular values of C0(1), C0(2), C0(3) and C0(4) can

be estimated to be, respectively,

σmax0 (1) ≈ 0.5101 ,

σmax0 (2) ≈ 0.7214 ,

σmax0 (3) ≈ 0.9461

and

σmax0 (4) = 0.51 .

So, it can be shown as in the previous example that ϕ has a continuous i/s characteristic.

The state characteristic corresponding to the θ-stationary input u ∈ UΩ
θ defined by

u(ω) := u0(ω0) , ω ∈ Ω ,

where

u0(1) :=

−0.08

−1.31

 ,
u0(2) :=

 1.49

−0.75

 ,
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Figure 3.5: Maple Leaf

u0(3) :=

−1.62

−0.74

 ,
and

u0(4) :=

0.02

1.62

 ,
is a distribution over the “maple leaf,” as illustrated by the numerical simulation in

Figure 3.5.

Now let x∞ : Ω → R2 be the distribution over the Barnsley fern obtained as the

(pullback) limit of the RDSI in Example 3.39—in other words, the state characteristic

corresponding to the input specified in the example. Since x∞ is tempered (in fact, it is

bounded), the pullback trajectory of ϕ starting at x∞ and subject to u also converges

to the distribution over the maple leaf. Figure 3.6 illustrates the transition. ♦

3.4.2 Random Differential Equations with Inputs

In this section we give sufficient conditions for an RDEI to generate an RDSI. To a

large extent, this amounts to solving each ODE in a family parametrized by ω, as

it was the case in [4, 8] for RDS generated by RDE. The greatest technical challenge
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Figure 3.6: Barnsley Fern into Maple Leaf

here is establishing measurability properties—more specifically, axiom (I1) in Definition

3.16. The analogous measurability issue for RDS is not discussed in detail in either of

Arnold’s or Chueshov’s monographs, and so we take the opportunity to give a thorough

and self-contained proof.

For the reader’s convenience, we give a brief review of the theory of existence and

uniqueness for (deterministic) ordinary differential equations, introducing all the nota-

tion and terminology we shall need, in Appendix B.

Given a map f : Rn → Rn and an X ⊆ Rn, denote

‖f‖X := sup
x∈X
|f(x)|+ sup

x,y∈X
x 6=y

|f(x)− f(y)|
|x− y|

. (3.27)

We say that f is locally Lipschitz if

sup
x,y∈K
x 6=y

|f(x)− f(y)|
|x− y|

<∞

for every compact K ⊆ Rn. In this case, f is also continuous, and so ‖f‖K < ∞ for

every such K. Note that the family C0,1
loc (Rn;Rn) of locally Lipschitz maps Rn → Rn

with multiplication by a real scalar constitutes a vector space on which the map

‖ · ‖K : C0,1
loc (Rn;Rn) −→ R>0
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defined as above constitutes a pseudonorm for each compact K ⊆ Rn.

For any map f : Rn → Rn, we call

supp f := {x ∈ Rn ; f(x) 6= 0}

the support of f . This same map is said to be compactly supported if supp f is compact.

For any f : Rn → Rn, it follows straight from (3.27) that ‖f‖X1 6 ‖f‖X2 whenever

X1 ⊆ X2 ⊆ Rn. For a locally Lipschitz, compactly supported f , the maximum of ‖f‖K

is attained at K := supp f (see Lemma B.1).

In Appendix B, we introduce a working notion of admissible (deterministic) “right-

hand sides” f for a nonautonomous ODE

ξ̇ = f(t, ξ) , t > 0 ,

and give sufficient growth conditions of f yielding globally defined solutions (Proposition

B.7). We now proceed to extend this to RDEI/RDSI. We begin by extending the

concept of righthand side.

Definition 3.41 (θ-Righthand Side). Let U be a Borel subset of Rk and U be a set of

θ-inputs R>0 × Ω→ U . A (F ⊗ B(Rn)⊗ B(U))-measurable map f : Ω× Rn × U → Rn

is said to be a θ-righthand side (with respect to U) if

(R1) f(ω, ·, u) : Rn → Rn is locally Lipschitz for every ω ∈ Ω and every u ∈ U , and

(R2) for each ω ∈ Ω, every u ∈ U and any b > a > 0,∫ b

a
‖f(θtω, ·, ut(ω))‖K dt <∞

for every compact K ⊆ Rn. 4

For each positive integer k, let Hk : Rn → R be a smooth7 “bump function” such

that

Hk(x) = 1 , ∀x ∈ Bk(0) ,

0 6 Hk(x) 6 1 , ∀x ∈ Bk+1(0)\Bk(0) ,

7With continuous derivatives of all orders.
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and

Hk(x) = 0 , ∀x ∈ Rn\Bk+1(0) .

(For the construction of smooth bump functions, refer to [39, Lemma 2.22 on page 42].)

In particular, the first order partial derivatives of Hk are continuous and compactly

supported. Therefore Hk is globally Lipschitz. Denote

Lk := sup
x,y∈Rn
x 6=y

|Hk(x)−Hk(y)|
|x− y|

<∞ .

If f : Ω× Rn × U → Rn is a θ-righthand side with respect to a set of θ-inputs U , then

(ω, x, u) 7−→ Hk(x)f(ω, x, u) , (ω, x, u) ∈ Ω× Rn × U

is also a θ-righthand side with respect to U for any positive integer k. In particular,

‖Hk(·)f(ω, ·, u)‖Rn = ‖Hk(·)f(ω, ·, u)‖Bk(0) , ∀ω ∈ Ω , ∀u ∈ U .

(See Lemma B.4.)

We are now ready to show how RDSI can be obtained from RDEI.

Theorem 3.42 (RDSI Generated by RDEI). Suppose that f : Ω × Rn × U → Rn is a

θ-righthand side with respect to SU∞. Suppose that f satisfies the growth condition

|f(ω, x, u)| 6 α(ω)|x|+ β(ω) + c(u) , ∀ω ∈ Ω , ∀(x, u) ∈ Rn × U , (3.28)

for some tempered random variables α, β : Ω → R>0, and some continuous function

c : U → R>0. Then the RDEI

ξ̇ = f(θtω, ξ, ut(ω)) , t > 0 , ω ∈ Ω , u ∈ SU∞ , (3.29)

generates an RDSI (θ, ϕ,SU∞), uniquely determined by the properties that

ϕ(0, ω, x, u) = x , ∀(ω, x, u) ∈ Ω× Rn × SU∞ ,

and

d

dt
ϕ(t, ω, x, u) = f(θtω, ϕ(t, ω, x, u), ut(ω)) , (3.30)

for each (ω, x, u) ∈ Ω× Rn × SU∞, for Lebesgue-almost every t > 0.
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Proof. The proof consists of two main steps. The first step is to construct the “flow”

ϕ : R>0×Ω×Rn×SU∞ → Rn of (3.29). We then show that it satisfies axioms (I1)–(I5)

in Definition 3.16.

Fix arbitrarily ω ∈ Ω, u ∈ SU∞, and define gω,u : R>0 × Rn → Rn by

gω,u(t, x) := f(θtω, x, ut(ω)) , (t, x) ∈ R>0 × Rn .

Since gω,u is the composition of measurable maps, it is itself (B(R>0)⊗ B(Rn)) - meas-

urable. By (R1), gω,u(t, ·) = f(θtω, ·, ut(ω)) is locally Lipschitz for each t > 0, hence

gω,u satisfies (Q1). By (R2),∫ b

a
‖gω,u(t, ·)‖K dt =

∫ b

a
‖f(θtω, ·, ut(ω))‖K dt <∞

for any b > a > 0 and any compact K ⊆ Rn, hence gω,u satisfies (Q2) also. We conclude

that gω,u is a (deterministic) righthand side.

Now

|gω,u(t, x)| = |f(θtω, x, ut(ω))|

6 α(θtω)|x|+
(
β(θtω) + c(ut(ω))

)
, ∀t > 0 , ∀x ∈ Rn .

The hypotheses that α and β are tempered, u ∈ SU∞ and c is continuous guarantee that

the functions

t 7−→ α(θtω) , t > 0 , t 7−→ β(θtω) , t > 0 ,

and

t 7−→ c(ut(ω)) , t > 0 ,

are locally integrable. Thus gω,u satisfies growth condition (B.3). It then follows from

Proposition B.7 that the ODE

ξ̇ = f(θtω, ξ, ut(ω)) = gω,u(t, ξ) , t > 0 ,

generates a continuous global flow ϕω,u : R>0 × Rn → Rn, uniquely determined by the

properties that

ϕω,u(0, x) = x , ∀x ∈ Rn ,
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and

d

dt
ϕω,u(t, x) = f(θtω, ϕω,u(t, x), ut(ω)) = gω,u(t, ϕω,u(t, x)) (3.31)

for all x ∈ Rn, for Lebesgue-almost every t > 0.

Define ϕ : R>0 × Ω× Rn × SU∞ → Rn by

ϕ(t, ω, x, u) := ϕω,u(t, x) , (t, ω, x, u) ∈ R>0 × Ω× Rn × SU∞ .

We proceed to show that (θ, ϕ,SU∞) satisfies the axioms of an RDSI.

(I1) Fix arbitrarily u ∈ SU∞ and denote

ϕu(t, ω, x) := ϕ(t, ω, x, u) , ∀(t, ω, x) ∈ R>0 × Ω× Rn .

We shall show that

ϕu(t, ω, x) = lim
m→∞

ϕ(m)
u (t, ω, x) , ∀(t, ω, x) ∈ R>0 × Ω× Rn , (3.32)

where, for each positive integer m,

ϕ(m)
u (t, ω, x) := lim

i→∞
ϕ(m,i)
u (t, ω, x) , (t, ω, x) ∈ R>0 × Ω× Rn , (3.33)

and the ϕ
(m,i)
u are defined recursively by

ϕ(m,0)
u (t, ω, x) := x , (t, ω, x) ∈ R>0 × Ω× Rn ,

ϕ
(m,i)
u (t, ω, x) := x+

∫ t

0
Hm(ϕ(m,i−1)

u (s, ω, x))f(θsω, ϕ
(m,i−1)
u (s, ω, x), us(ω)) ds ,

(t, ω, x) ∈ R>0 × Ω× Rn , i = 1, 2, 3, . . . .

Before we get to that, assume that we have shown that the limits in (3.33) exist

and (3.32) holds. If we can show that each ϕ
(m,i)
u above is (B(R>0) ⊗ F ⊗ B(Rn))-

measurable, then it follows from the limit in (3.33) that ϕ
(m)
u is (B(R>0)⊗F ⊗B(Rn))-

measurable for each positive integer m, and then from the limit in (3.32) that ϕu is

itself (B(R>0)⊗F ⊗ B(Rn))-measurable.

Throughout the rest of the proof of (I1), we shall say simply ‘measurable’ to mean

‘(B(R>0) ⊗ F ⊗ B(Rn))-measurable,’ for short. Fix arbitrarily any positive integer m.
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Clearly, ϕ
(m,0)
u is globally defined and measurable. Now suppose it has been established

that ϕ
(m,i−1)
u is globally defined and measurable for some i > 1. Then the integrand

(t, ω, x) 7−→ Hm(ϕ(m,i−1)
u (t, ω, x))f(θtω, ϕ

(m,i−1)
u (t, ω, x), ut(ω)) ,

(t, ω, x) ∈ R>0 × Ω× Rn ,

is measurable, since it is the composition measurable maps. Furthermore, for any

arbitrarily fixed ω ∈ Ω and x ∈ Rn, the function

t 7→ |Hm(ϕ
(m,i−1)
u (t, ω, x))f(θtω, ϕ

(m,i−1)
u (t, ω, x), ut(ω))|

6 ‖Hm(·)f(θtω, ·, ut(ω))‖Rn

6 ‖Hm(·)f(θtω, ·, ut(ω))‖Bm(0) , t > 0 ,

is locally integrable by the last statement in Lemma B.4. Thus ϕ
(m,i)
u is globally de-

fined. In particular, it follows from Proposition C.7, applied with ‘Ω×Rn’ for ‘X’ and

‘F ⊗ B(Rn)’for ‘F ,’ that ϕ
(m,i)
u is measurable. This completes the induction step, thus

establishing the measurability of ϕ
(m,i)
u for all i > 0. Since the positive integer m was

chosen arbitrarily, this is true for every such m.

It follows as in Theorem B.8 that the limit in (3.33) exists. Furthermore, for each

positive integer m, it follows from the same lemma, applied for each ω ∈ Ω, that ϕ
(m)
u

is the unique global solution of the RDE

ξ̇ = Hm(ξ)f(θtω, ξ, ut(ω)) , t > 0 , ω ∈ Ω .

It remains to show that (3.32) holds. Fix arbitrarily ω ∈ Ω, x ∈ Rn and T > 0, then

chose a positive integer m0 such that

ϕu(t, ω, x) ∈ Bm0(0) , ∀t ∈ [0, T ] .

Then

d

dt
ϕu(t, ω, x) = f(θtω, ϕu(t, ω, x), ut(ω))

= Hm(ϕu(t, ω, x))f(θtω, ϕu(t, ω, x), ut(ω)) , ∀m > m0 ,

for Lebesgue-almost every t ∈ [0, T ]. By uniqueness, we must then have

ϕ(m)
u (t, ω, x) = ϕu(t, ω, x) , ∀t ∈ [0, T ] , ∀m > m0 .
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This shows that

lim
m→∞

ϕ(m)
u (t, ω, x) = ϕu(t, ω, x) , ∀t ∈ [0, T ] .

Since ω ∈ Ω, x ∈ Rn and T > 0 were chosen arbitrarily, this establishes (3.32).

Since u ∈ SU∞ was chosen arbitrarily, this shows that ϕu = ϕ(·, ·, ·, u) is (F⊗B(R>0)⊗

B(Rn))-measurable for each such u. This establishes (I1).

(I2) For each arbitrarily fixed (t, ω, u) ∈ R>0 × Ω× SU∞,

ϕ(t, ω, ·, u) = ϕω,u(t, ·)

is continuous from the construction at the beginning of the proof. This establishes (I2).

(I3) For any (ω, x, u) ∈ Ω× Rn × SU∞, it also follows straight from the construction

at the beginning of the proof that

ϕ(0, ω, x, u) = ϕω,u(0, x) = x .

This establishes (I3).

(I4) Fix s ∈ R>0, ω ∈ Ω, x ∈ X and u, v ∈ SUθ arbitrarily. Set

y := ϕ(s, ω, x, u) .

We want to show that

ϕ(t, θsω, y, v) = ϕ(s+ t, ω, x, u♦sv) , ∀t > 0 .

We have

ϕ(t, θsω, y, v) = y +

∫ t

0
f(θs+τω, ϕ(τ, θsω, y, v), vτ (θsω)) dτ

= ϕ(s, ω, x, u) +

∫ t

0
f(θs+τω, ϕ(τ, θsω, y, v), vτ (θsω)) dτ

= x+

∫ s

0
f(θσω, ϕ(σ, ω, x, u), uσ(ω)) dσ

+

∫ t

0
f(θs+τω, ϕ(τ, θsω, y, v), vτ (θsω)) dτ

= x+

∫ s

0
f(θσω, ϕ(σ, ω, x, u), uσ(ω)) dσ

+

∫ s+t

s
f(θτ̃ω, ϕ(τ̃ − s, θsω, y, v), vτ̃−s(θsω)) dτ̃ ,
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hence

ϕ(t, θsω, y, v) = x+

∫ s+t

0
f(θτω, ψs,ω,x,u,v(τ), (u♦sv)τ (ω)) dτ , ∀t > 0 , (3.34)

where ψs,ω,x,u,v : R>0 → Rn is defined by

ψs,ω,x,u,v(τ) :=

 ϕ(τ, ω, x, u) , 0 6 τ < s

ϕ(τ − s, θsω, y, v) , s 6 τ
. (3.35)

It follows straight from the definition of ψ := ψs,ω,x,u,v that

ψ(τ) = ϕ(τ, ω, x, u)

= x+

∫ τ

0
f(θσω, ϕ(σ, ω, x, u), uσ(ω)) dσ

= x+

∫ τ

0
f(θσω, ψ(σ), (u♦sv)σ(ω)) dσ

for 0 6 τ < s. And combining (3.35) with (3.34), we obtain

ψ(τ) = ϕ(τ − s, θsω, y, v)

= x+

∫ τ

0
f(θσω, ψ(σ), (u♦sv)σ(ω)) dσ

for τ > s. In summary,

ψ(τ) = x+

∫ τ

0
f(θτω, ψ(τ), (u♦sv)τ (ω)) dτ , ∀τ > 0 .

Now

ϕ(τ, ω, x, u♦sv) = x+

∫ τ

0
f(θσω, ϕ(σ, ω, x, u♦sv), (u♦sv)σ(ω)) dσ , ∀τ > 0 ,

while

ψ(0) = x = ϕ(0, ω, x, u♦sv) .

Therefore it follows by uniqueness that

ϕ(τ, ω, x, u♦sv) = ψ(τ) , ∀τ > 0 .

In particular,

ϕ(s+ t, ω, x, u♦sv) = ψ(s+ t) = ϕ(t, θsω, y, v) , ∀t > 0 .



113

(I5) Finally, given τ > 0, ω ∈ Ω, x ∈ Rn and u, v ∈ SU∞ such that ut(ω) = vt(ω) for

Lebesgue-almost all t ∈ [0, τ), we then have

d

dt
ϕ(t, ω, x, u) = f(θtω, ϕ(t, ω, x, u), ut(ω))

= gω,u(t, ϕ(t, ω, x, u))

= gω,v(t, ϕ(t, ω, x, u))

= f(θtω, ϕ(t, ω, x, u), vt(ω))

for Lebesgue-almost every t ∈ [0, τ). It then follows from Lemma B.5 that

ϕ(t, ω, x, u) = ϕω,u(t, x) = ϕω,v(t, x) = ϕ(t, ω, x, v) , ∀t ∈ [0, τ) .

Taking the limits as t approaches τ from the left, we obtain

ϕ(τ, ω, x, u) = ϕω,u(τ, x)

= lim
t→τ−

= ϕω,u(t, x)

= lim
t→τ−

= ϕω,v(t, x)

= ϕω,v(τ, x)

= ϕ(τ, ω, x, v) .

This establishes (I5).

Finally, suppose that (θ, ϕ̃,SU∞) is an RDSI satisfying (3.30) for each (ω, x, u) ∈

Ω × Rn × SU∞, for Lebesgue-almost every t > 0. Then for each arbitrarily fixed ω ∈ Ω

and u ∈ SU∞, the map ϕ̃(·, ω, ·, u) satisfies (3.31) for all x ∈ Rn, for Lebesgue-almost

every t > 0. Furthermore,

ϕ̃(0, ω, x, u) = x , ∀x ∈ Rn ,

by (I3). Therefore ϕ̃(·, ω, ·, u) = ϕω,u. Since ω ∈ Ω and u ∈ SU∞ were chosen arbitrarily,

this shows that ϕ̃ = ϕ, thus completing the proof that (θ, ϕ,SU∞) is an RDSI.

Remark 3.43. Essentially the same argument used above to check (I1) can be used to

settle measurability for RDS generated by RDE under Arnold’s hypotheses. (See [4,

Theorem 2.2.2 and Remark 2.2.3(iii) on pages 60–61].) �
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Example 3.44 (Linear RDS/RDSI). The “righthand side”

f : Ω× Rn 7−→ Rr

(ω, x) −→ A(ω)x

of the linear RDE (3.1) in Example 3.2 satisfies the hypotheses of [4, Theorem 2.2.2/Re-

mark 2.2.3(iii) on pages 60–61]. Thus the “RDS” (θ,Φ) constructed in the example is

indeed an RDS.

Likewise, the “righthand side”

f : Ω× Rn × Rk 7−→ Rr

(ω, x, u) −→ A(ω)x+B(ω)u

of the linear RDEI (3.29) in Example 3.18 satisfies the hypotheses of Theorem 3.42—it

is a θ-righthand side satisfying growth condition (3.28). Thus the “RDSI” (θ, ϕ,SU∞)

constructed in the example is indeed an RDSI. ♦

As noted earlier, the natural continuous-time analogue of Proposition 3.25 also holds

for RDS or RDSI generated by RDEI which can be interpreted as a cascade or feedback

interconnection of lower-dimensional systems.
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Chapter 4

Monotone RDSIO and a Small-Gain Theorem

In this chapter we shall again be concerned with order relations. Unless otherwise

noted, we will tacitly assume that X and U are closed order-intervals of separable RTA

spaces—not necessarily the same underlying space for both X and U . In particular, X

and U will be convex, and the underlying cones will have nonempty interior.

4.1 Monotone RDSI

Given a partially ordered space (X,6), recall the partial orders induced in XΩ
B and SXθ

as discussed in Subsection 2.3.2.

Definition 4.1 (Monotone RDSI). An RDSI (θ, ϕ,U) is said to be monotone if the

underlying state and input spaces are partially ordered spaces (X,6X), (U,6U ), and

ϕ(·, ·, x(·), u) 6X ϕ(·, ·, z(·), v)

whenever x, z ∈ XΩ
B and u, v ∈ U are such that x 6X z and u 6U v. 4

Remark 4.2. Of course that if the inequality above holds pointwise in X, that is, if

ϕ(t, ω, x, u) 6X ϕ(t, ω, z, v)

holds for every t > 0, every ω ∈ Ω, and every x, z ∈ X and u, v ∈ U such that x 6X z

and u 6U v, then (θ, ϕ,U) is monotone in the sense of the definition above. This is

how we shall typically check for monotonicity. Proposition 4.4 below should further

motivate our choice for a looser definition. �
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4.1.1 Monotone Characteristics

Definition 4.3 (Monotone Characteristics). Suppose (X,6X) and (U,6U ) are par-

tially ordered spaces. A map M : E ⊆ UΩ
B → XΩ

B is said to be monotone or order-

preserving if M(u) 6X M(v) whenever u, v ∈ E satisfy u 6U v. Analogously, if

M(u) >X M(v) whenever u 6U v, then M is said to be anti-monotone or order-

reversing. 4

Most of the time, the underlying partially ordered space will be clear from the context.

So, unless there is any risk of confusion, we shall again drop the indices in ‘6X ’ and

‘6U ,’ and write simply ‘6 .’

Proposition 4.4. If an RDSI (θ, ϕ,U) is monotone and has an i/s characteristic

K : UΩ
θ → XΩ

θ , then K is order-preserving; in other words, if u, v ∈ UΩ
θ and u 6 v,

then K(u) 6 K(v).

Proof. The proof is straightforward, and we emphasize its main purpose of pointing out

a subtlety in Definition 4.1 which might have otherwise gone overlooked (see Remark

4.5 below). Pick any u, v ∈ UΩ
θ such that u 6 v, and fix x ∈ XΩ

θ arbitrarily. Then

x 6 x and ū 6 v̄. By Definition 4.1, there exists a θ-invariant subset of full-measure

Ω̃ ⊆ Ω such that

ϕ(t, ω, x(ω), ū) 6 ϕ(t, ω, x(ω), v̄) , ∀t > 0 , ∀ω ∈ Ω̃ . (4.1)

Thus

ϕ(t, θ−tω, x(θ−tω), ū) 6 ϕ(t, θ−tω, x(θ−tω), v̄) , ∀t > 0 , ∀ω ∈ Ω̃ ,

in view of the θ-invariance of Ω̃. The result then follows by taking the limit as t→∞

on both sides of the inequality above for each fixed ω ∈ Ω̃.

Remark 4.5. Note that we do not need for (4.1) to hold for ω ∈ Ω\Ω̃. �
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4.1.2 Infinitesimal Characterization of Monotonicity

Let U be a Borel subset of Rk and f : Ω × Rn × U → Rn be a θ-righthand side, with

respect to SU∞, satisfying growth condition (3.28). Then the RDEI

ξ̇ = f(θtω, ξ, ut(ω)) , t > 0 , ω ∈ Ω , u ∈ SU∞ , (4.2)

generates an RDSI (θ, ϕ,SU∞), as we saw in Theorem 3.42. We now discuss sufficient

conditions for this RDSI to be monotone.

Recall what it means for RDEI (4.2) to generate the RDSI (θ, ϕ,SU∞). This is to

say that

ϕ(0, ω, x, u) = x , ∀(ω, x, u) ∈ Ω× Rn × SU∞ ,

and

d

dt
ϕ(t, ω, x, u) = f(θtω, ϕ(t, ω, x, u), ut(ω)) ,

for each (ω, x, u) ∈ Ω × Rn × SU∞, for Lebesgue-almost all t > 0. Putting this in

perspective against our definition of monotonicity for RDSI—Definition 4.1 above—,

we see that monotonicity properties for RDSI generated by RDEI can be obtained by

applying known results from the deterministic theory ω-wise.

We follow the framework of Angeli and Sontag [3].

Definition 4.6 (Tangent Cone). Given a nonempty S ⊆ Rn and a p ∈ S, we define

the tangent cone to S at p to be the collection of all points of the form

lim
k→∞

1

tk
(pk − p)

for some sequences (pk)k∈N in S and (tk)k∈N in (0,∞) such that pk −→ p and tk −→ 0

as k →∞. 4

Theorem 4.7 (Monotone RDSI by RDEI). Assume Rn and Rk to be partially ordered

by cones KRn and KRk , respectively, and suppose U ⊆ Rk is closed and order-convex.

Let f : Ω×Rn×U → Rn be a θ-righthand side with respect to SU∞ which satisfies growth

condition (3.28). Then the RDSI (θ, ϕ,SU∞) generated by (4.2) is monotone if, and only

if, for θ-almost every ω ∈ Ω,

x 6 z , u 6 v ⇒ f(ω, z, v)− f(ω, x, u) ∈ Tz−xKRn .
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Proof. This follows from [3, Theorem 1 on page 1686], applied for each ω ∈ Ω for which

the condition holds.

Proposition 4.8 (Kamke Conditions). Assume the same hypotheses as in Theorem 4.7,

except for assuming that Rn and Rk are partially ordered specifically by their respective

positive orthant cones, that U has nonempty interior, and that f(ω, ·, ·) : Rn×U → Rn is

continuously differentiable for θ-almost all ω ∈ Ω. Then the RDSI (θ, ϕ,SU∞) generated

by (4.2) is monotone if, and only if, for θ-almost every ω,

(K1)
∂fi
∂xj

(x, u) > 0, for every x ∈ Rn, every u ∈ intU , and every i, j ∈ {1, . . . , n} such

that i 6= j, and

(K2)
∂fi
∂uj

(x, u) > 0, for every x ∈ Rn, every u ∈ intU , every i ∈ {1, . . . , n}, and every

j ∈ {1, . . . , k}.

Proof. This follows from [3, Proposition III.2 on page 1687], applied for each ω ∈ Ω

such that the conditions hold.

Example 4.9 (Monotone, Linear RDSI). In Example 3.18, equip Rn and Rk with their

respective positive orthant cones, and suppose that each of the off-diagonal entries of A

are nonnegative θ-almost everywhere, and that each of the entries of B are nonnegative

θ-almost everywhere. Then the RDSI in the example is monotone. Indeed, if this is

the case, then it is not difficult to see that

f : Ω× Rn × Rk −→ Rn

(ω, x, u) 7−→ A(ω)x+B(ω)u

satisfies (K1) and (K2). ♦

4.2 Converging Input to Converging State Property

Example 4.10 (CICS Property for Linear RDSI). Recall the RDSI (θ, ϕ,SU∞) from Ex-

ample 3.34, generated by the RDEI

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t > 0 , ω ∈ Ω , u ∈ SU∞ ,
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evolving on the state space X = Rn, with input space U = Rk, and with A : Ω →

Mn×n(R) and B : Ω→Mn×k(R) being random matrices satisfying the integrability and

growth conditions specified in the example. We saw that (θ, ϕ,SU∞) has a continuous

i/s characteristic K : UΩ
θ → XΩ

θ .

Now consider the following, slightly modified situation. Suppose that the pullback

of a tempered θ-input u ∈ SU∞ converges (in the tempered sense) to a u∞ ∈ UΩ
θ . One

may expect that the continuity of ϕ (on the state variable) and K would imply that

ξ̌x,ut (ω) −→θ [K(u∞)](ω) , as t→∞ , ∀x ∈ XΩ
θ . (4.3)

This is indeed true of this particular example, as we will proceed to show. We note,

however, that this is not true in general. In fact, this “converging input to converging

state” property might fail even in the deterministic case, as illustrated by the coun-

terexample in [48].

Fix arbitrarily a tempered initial state x ∈ XΩ
θ . As we saw in Example 3.34, ϕ

is tempered. Therefore ξx,u is tempered. So if we can prove θ-almost sure pointwise

convergence in (4.3), then it follows from Proposition 2.67 that convergence is also

tempered.

From Example 3.34, we have

ϕ(t, θ−tω, x(θ−tω), u) = Φ(t, θ−tω, x(θ−tω)) + Ψ(t, θ−tω, u) , ∀(t, ω) ∈ R>0 × Ω .

In the same example, we showed that

Φ(t, θ−tω, x(θ−tω)) −→ 0 as t→∞ , ∀̃ω ∈ Ω . (4.4)

So it remains to show that

Ψ(t, θ−tω, u) −→ [K(u∞)](ω) as t→∞ , ∀̃ω ∈ Ω .

From a change of variables combined with splitting the integral defining [K(u∞)](ω)

into an integral from −∞ to −t plus another one from −t to 0, we obtain

|Ψ(t, θ−tω, u)− [K(u∞)](ω)|

6
∫ −t
−∞
|Ξ(σ, 0, ω)B(θσω)u∞(θσω)| dσ

+

∫ 0

−t
‖Ξ(σ, 0, ω)B(θσω)‖ · |uσ+t(θ−tω)− u∞(θσω)| dσ
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for θ-almost every ω ∈ Ω, for every t > 0. Since the integral∫ 0

−∞
|Ξ(σ, 0, ω)B(θσω)u∞(θσω)| dσ

converges for θ-almost all ω ∈ Ω (refer to the estimates and computations in Example

3.34), it follows from dominated convergence that∫ −t
−∞
|Ξ(σ, 0, ω)B(θσω)u∞(θσω)| dσ −→ 0 as t→∞ , ∀̃ω ∈ Ω .

It remains to show that the second integral in the inequality above also goes to zero

θ-almost surely.

Since u is tempered by hypothesis, there exists a tempered random variable r : Ω→

R>0 such that

|ut(θ−tω)|+ |u∞(ω)| 6 r(ω) , ∀̃ω ∈ Ω .

Now1 ∫ 0

−t
‖Ξ(σ, 0, ω)B(θσω)‖ · |uσ+t(θ−tω)− u∞(θσω)| dσ

=

∫ 0

−∞
‖Ξ(σ, 0, ω)B(θσω)‖ · |uσ+t(θ−tω)− u∞(θσω)| · χ[−t,0](σ) dσ

6
∫ 0

−∞
‖Ξ(σ, 0, ω)B(θσω)‖r(θσω) dσ , ∀t > 0 ,

the last of the integrals being convergent just as above. From the hypotheses that u is

tempered and ut −→θ u∞ as t→∞, we have

|uσ+t(θ−(σ+t)θσω)− u∞(θσω)| −→ 0 as t→∞ , ∀̃ω ∈ Ω , ∀σ 6 0 .

So, it follows once again by dominated convergence that∫ 0

−t
‖Ξ(σ, 0, ω)B(θσω)‖ · |uσ+s(θ−tω)− u∞(θσω)| dσ −→ 0

as t → ∞, for θ-almost all ω ∈ Ω. Since x ∈ XΩ
θ was chosen arbitrarily, this proves

(4.3). ♦

1Here χ[−t,0] : R → R is the characteristic function of the interval [−t, 0], defined by χ(σ) := 1 for
σ ∈ [−t, 0], and χ(σ) := 0 for σ /∈ [−t, 0]. Therefore the abuse of notation in the second integral is
harmless—the integrand is 0 between −∞ and −t.
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4.2.1 Random CICS

The ‘converging input to converging state’ result below was first stated and proved for

deterministic and finite-dimensional “monotone control systems” by Angeli and Sontag

[3, Proposition V.5(2)]. In [19, Theorem 1], Enciso and Sontag explore normality to

extend the result to infinite-dimensional systems. Replacing the geometric properties

in [19] by minihedrality, it is possible to extend this result further to monotone RDSI.

Theorem 4.11 (Random CICS). Suppose that X and U are separable RTA spaces.

Let (θ, ϕ,U) be a tempered, monotone RDSI with state space X and input space U ,

and suppose that ϕ has a continuous i/s characteristic K : UΩ
θ → XΩ

θ . If u ∈ U and

u∞ ∈ UΩ
θ are such that

(i) u is tempered and

(ii) ǔt −→θ u∞ as t→∞,

then

ξ̌x,ut −→θ K(u∞) as t→∞ , ∀x ∈ XΩ
θ . (4.5)

Proof. Fix arbitrarily x ∈ XΩ
θ . Since ϕ is assumed to be tempered, the hypothesis (i)

that u is tempered implies that the θ-stochastic process ξx,u is also tempered (refer to

Definition 3.19). Thus it remains to prove the pointwise convergence in (4.5), the tem-

peredness bit then following straight from Proposition 2.67; more precisely, it remains

to show that

ξ̌x,ut (ω) −→ [K(u∞)](ω) as t→∞ , ∀̃ω ∈ Ω , (4.6)

and it will then follow directly from the aforementioned proposition that convergence

is tempered.

This will require a little setting up.

In virtue of the pointwise convergence implied in (ii), it will follow that β0
u(ω) is

precompact for θ-almost all ω ∈ Ω. Let (aτ )τ>0 and (bτ )τ>0 be, respectively, lower and

upper tails of the pullback trajectories of u (refer to Definition 2.68). Observe that

aτ , bτ ∈ UΩ
θ for each τ > 0, and that

aτ , bτ −→θ u∞ as τ →∞ (4.7)
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(refer to Proposition 2.69 and Lemma 2.72).

For each τ > 0, let āτ and b̄τ be the θ-stationary processes generated by aτ and bτ ,

respectively. Then

(āτ )s(ω) = aτ (θsω) = inf
t>τ

ut(θ−tθsω) 6 uτ+s(θ−(τ+s)θsω) = [ρτ (u)]s(ω)

for θ-almost every ω ∈ Ω, for every τ, s > 0, and, similarly,

[ρτ (u)]s(ω) 6 (b̄τ )s(ω) , ∀̃ω ∈ Ω , ∀τ, s > 0 .

Thus

āτ 6 ρτ (u) 6 b̄τ , ∀τ > 0 . (4.8)

We now return to (4.6). Using the cocycle property, we may rewrite

ξ̌x,ut (ω) = ϕ(t− τ, θ−(t−τ)ω, ϕ(τ, θ−tω, x(θ−tω), u), ρτ (u))

= ϕ(t− τ, θ−(t−τ)ω, xτ (θ−(t−τ)ω), ρτ (u))

= ξ̌
xτ ,ρτ (u)
t−τ (ω) , ∀ω ∈ Ω , ∀t > τ > 0 ,

where xτ ∈ XΩ
θ is defined by xτ := ξ̌x,uτ . Therefore

‖ξ̌x,uτ+s(ω)− [K(u∞)](ω)‖ = ‖ξ̌xτ ,ρτ (u)
s (ω)− [K(u∞)](ω)‖

for θ-almos every ω ∈ Ω, for all τ, s > 0. For any such ω, s, τ , we have

‖ξ̌xτ ,ρτ (u)
s (ω)− [K(u∞)](ω)‖ 6 ‖ξ̌xτ ,ρτ (u)

s (ω)− ξ̌xτ ,āτs (ω)‖

+‖ξ̌xτ ,āτs (ω)− [K(aτ )](ω)‖

+‖[K(aτ )](ω)− [K(u∞)](ω)‖ .

From (4.7) and the continuity of K, there exist θ-invariant subsets Ω̃a and Ω̃b of full

measure of Ω such that

‖[K(aτ )](ω)− [K(u∞)](ω)‖ −→ 0 as τ →∞ , ∀ω ∈ Ω̃a ,

and

‖[K(bτ )](ω)− [K(u∞)](ω)‖ −→ 0 as τ →∞ , ∀ω ∈ Ω̃b .
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Similarly, from the definition of i/s characteristic, for any integer n > 0, there exist

θ-invariant subsets Ω̃a,n and Ω̃b,n of full measure of Ω such that

‖ξ̌xn,āns (ω)− [K(an)](ω)‖ −→ 0 as s→∞ , ∀ω ∈ Ω̃a,n ,

and

‖ξ̌xn,b̄ns (ω)− [K(bn)](ω)‖ −→ 0 as s→∞ , ∀ω ∈ Ω̃b,n .

Now by (4.8) and monotonicity, for each integer n > 0, there exists a θ-invariant subset

of full measure Ω̃6,n ⊆ Ω such that

ξ̌xn,āns (ω) 6 ξ̌xn,ρn(u)
s (ω) 6 ξ̌xn,b̄ns (ω) , ∀s > 0 , ∀ω ∈ Ω̃6,n .

Let

Ω̃ := Ω̃a ∩ Ω̃b ∩

( ∞⋂
n=0

Ω̃a,n

)
∩

( ∞⋂
n=0

Ω̃b,n

)
∩

( ∞⋂
n=0

Ω̃6,n

)
.

Thus Ω̃ is a countable intersection of θ-invariant subsets of full measure of Ω and, hence,

itself a θ-invariant subset of full measure of Ω. We shall show that convergence in (4.6)

occurs for every ω ∈ Ω̃.

Fix arbitrarily an ω ∈ Ω̃ and a positive integer k. It follows from the construction

of Ω̃ that there exists an integer nk > 0 such that

‖[K(aτ )](ω)− [K(u∞)](ω)‖ < 1/k , ∀τ > nk ,

and

‖[K(bτ )](ω)− [K(u∞)](ω)‖ < 1/k , ∀τ > nk .

Now we can use the convergence in the definition of i/s characteristic to choose an

sk > 0 such that

‖ξ̌xnk ,ānks (ω)− [K(ank)](ω)‖ < 1/k , ∀s > sk ,

and

‖ξ̌xnk ,b̄nks (ω)− [K(bnk)](ω)‖ < 1/k , ∀s > sk .

Again from the construction of Ω̃, we have

ξ̌
xnk ,ānk
s (ω) 6 ξ̌

xnk ,ρnk (u)
s (ω) 6 ξ̌

xnk ,b̄nk
s (ω) , ∀s > 0 .
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Thus

‖ξ̌xnk ,ρnk (u)
s (ω)− ξ̌xnk ,ānks (ω)‖ 6 C‖ξ̌xnk ,b̄nks (ω)− ξ̌xnk ,ānks (ω)‖ , ∀s > 0 ,

where C > 0 is the normality constant for U+. Now

‖ξ̌xnk ,b̄nks (ω)− ξ̌xnk ,ānks (ω)‖ 6 ‖ξ̌xnk ,b̄nks (ω)− [K(bnk)](ω)‖

+‖[K(bnk)](ω)− [K(u∞)](ω)‖

+‖[K(u∞)](ω)− [K(ank)](ω)‖

+‖[K(ank)](ω)− ξ̌xnk ,ānks (ω)‖

6 4/k , ∀s > sk .

We conclude that

‖ξ̌x,ut (ω)− [K(u∞)](ω)‖ = ‖ξ̌xnk ,ρnk (u)
t−nk (ω)− [K(u∞)](ω)‖

6 ‖ξ̌xnk ,ρnk (u)
t−nk (ω)− ξ̌xnk ,ānkt−nk (ω)‖

+‖ξ̌xnk ,ānkt−nk (ω)− [K(ank)](ω)‖

+‖[K(ank)](ω)− [K(u∞)](ω)‖

< 4C/k + 1/k + 1/k

= (4C + 2)/k , ∀t > nk + sk .

Since ω ∈ Ω̃ and the positive integer k were chosen arbitrarily, this completes the

proof.

4.2.2 Compact RDSI

The hypothesis (ii) that the θ-input u converges served two key purposes in the proof

of Theorem 4.11. It was first used to show that u was indeed eventually precompact. It

was then used to establish (4.7). If we know a priori that u is eventually precompact,

then we may still construct lower and upper tails for u and compute its θ-limits,

θ-limu as θ-limu .

If the θ-limits

θ-lim ξx,u as θ-lim ξx,u
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also exist, then a natural question would be how these θ-limits may compare with

K(θ-limu) as K(θ-limu) .

We address this question in the next result.

Theorem 4.12 (Sub-CICS). Suppose that X and U are separable RTA spaces. Let

(θ, ϕ,U) be a tempered, compact, monotone RDSI with state space X and input space

U , and suppose that ϕ has a continuous i/s characteristic K : UΩ
θ → XΩ

θ . Then

K(θ-limu) 6 θ-lim ξx,u

and

θ-lim ξx,u 6 K(θ-limu)

for every x ∈ XΩ
θ and every tempered, eventually precompact u ∈ U .

Proof. We work out the details for the first inequality, the proof of the second one being

entirely analogous. Fix arbitrarily a tempered initial state x ∈ XΩ
θ and a tempered,

eventually precompact input u ∈ U . By Definitions 3.19 and 3.20, the θ-stochastic

process ξx,u is also tempered and eventually precompact. Let τu > 0 be such that

βτuu (ω) and βτuξx,u(ω) are precompact for θ-almost every ω ∈ Ω, and let (aτ )τ>τu be a

lower tail of the pullback trajectories of u. From Proposition 2.69, both θ-limu and

θ-lim ξx,u exist and define tempered random variables in their respective spaces. Also

from Proposition 2.69, we know that

aτ −→θ θ-limu as τ →∞ .

Thus

K(aτ ) −→θ K(θ-limu) as τ →∞

by continuity. Therefore it is enough to show that

K(aτn) 6 θ-lim ξx,u , ∀n ∈ N , (4.9)

for an arbitrarily fixed sequence (τn)n∈N going to infinity in [τu,∞).
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Fix arbitrarily n ∈ N. Let āτn be the θ-stationary process generated by aτn . As in

the proof of Theorem 4.11, we have āτn 6 ρτn(u) and ξ̌x,ut = ξ̌
ξ̌x,uτn ,ρτn (u)
t−τn for all t > τn.

Thus, by monotonicity,

ξ
ξ̌x,uτn ,āτn
s 6 ξ

ξ̌x,uτn ,ρτn (u)
s , ∀s > 0 .

Since we are assuming ϕ to be tempered, the pullback state ξ̌x,uτn is a tempered random

variable. By Lemmas 2.64 and 2.63, the θ-stochastic processes ρτn(u) and āτn are

tempered. Thus ξ
ξ̌x,uτn ,ρτn (u)
s and ξ

ξ̌x,uτn ,āτn
s are eventually tempered. It follows from the

existence of the i/s characteristic and Lemmas 2.72 and 2.73 that

K(aτn) = θ-lim ξξ̌
x,u
τn ,āτn 6 θ-lim ξξ̌

x,u
τn ,ρτn (u) = θ-lim ξx,u .

Since n ∈ N was chosen arbitrarily, this proves (4.9).

Theorem 4.12 is a key ingredient in the proof of the Small-Gain Theorem RTA

spaces (Theorem 4.28 below).

4.3 Output Functions Revisited

We now take a closer look at output functions from the point of view of regularity,

growth, and order-preserving/order-reversing properties.

4.3.1 Measurability

We begin with a technical measurability consideration.

Lemma 4.13. Consider an output function h : Ω ×X → Y . If D : Ω → 2X\{∅} is a

closed random set in X, then

ω −→ h(ω,D(ω)) := {h(ω, x) ; x ∈ D(ω)} , ω ∈ Ω ,

is a random set in Y .

Proof. By Proposition 2.18, there exist a Polish space (Z, dZ) and a Carathéodory map

g : Ω × Z → X such that D(ω) = g(ω,Z) for every ω ∈ Ω. Let (zk)k∈N be a dense

sequence in Z.
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Fix y ∈ Y arbitrarily. We want to show that

ω 7−→ distY (y, h(ω,D(ω))) , ω ∈ Ω ,

is F-measurable. Since (zk)k∈N is dense in Z and g(ω, ·) is continuous, (g(ω, zk))k∈N is

dense in D(ω) for each ω ∈ Ω. Now h(ω, ·) is also continuous, so (h(ω, g(ω, zk)))k∈N is

dense in h(ω,D(ω)) for each ω ∈ Ω. It follows that

distY (y, h(ω,D(ω))) = inf
x∈D(ω)

dY (y, h(ω, x))

= inf
k∈N

dY (y, h(ω, g(ω, zk))) , ω ∈ Ω .

For each fixed k ∈ N,

g(·, zk) : Ω −→ X

is F-measurable. Thus

(·, g(·, zk)) : Ω −→ Ω×X

is also F-measurable. Since h is (F ⊗ B(X))-measurable and

dY (y, ·) : Y −→ R>0

is continuous, it follows that

dY (y, h(·, g(·, zk))) : Ω −→ R>0

is F-measuable. We conclude that distY (y, h(·, D(·))) is F-measurable—it is the infi-

mum of countably many compositions of measurable functions, hence itself measurable.

Since y ∈ Y was taken arbitrarily, this completes the proof.

Corollary 4.14. Assume the same hypotheses as in Lemma 4.13. If D is compact,

then h(·, D(·)) is a compact random set.

Proof. Indeed, h(·, D(·)) is a random set by the lemma. Furthermore, h(ω,D(ω)) is a

compact subset of Y for each ω ∈ Ω by the continuity of h(ω, ·).

Corollary 4.15. Assume the same hypotheses as in Lemma 4.13. If D : Ω→ 2X\{∅}

is a random set—not necessarily closed—, then h(·, D(·)) is also a random set.
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Proof. By Proposition 2.12, the closure D of D is a (closed) random set. By Lemma

4.13, h(·, D(·)) is a random set. It then follows, again from Proposition 2.12, that

h(·, D(·)) is a (closed) random set.

It now follows from continuity that

h(ω,D(ω)) = h(ω,D(ω)) , ∀ω ∈ Ω .

So h(·, D(·)) is a random set. It then follows, once again from Proposition 2.12 that

h(·, D(·)) is a random set.

4.3.2 Temperedness Preserving Outputs

Given an output function h : Ω×X → Y (Definition 3.21), we define its induced output

characteristic h∗ : XΩ
B → Y Ω

B by

[h∗(x)](ω) := h(ω, x(ω)) , ω ∈ Ω ,

for each x ∈ XΩ
B . This is the natural way to map random states x ∈ XΩ

B into random

readouts y ∈ Y Ω
B , generalizing what is accomplished by the output function h : X → Y

itself in the deterministic setting.

In the context of “closed-loop systems,” “cascades” and “feedback interconnections,”

we shall be interested in output funcions h such that h∗(X
Ω
θ ) ⊆ Y Ω

θ .

Definition 4.16 (Temperedness Preserving Outputs). An output function

h : Ω×X −→ Y

is said to preserve temperedness if the random set

h(·, D(·)) : Ω −→ 2Y \{∅}

is tempered for every tempered random set D : Ω→ 2X\{∅}. 4

In particular,

ω 7−→ h(ω, x(ω)) , ω ∈ Ω ,
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defines a tempered random variable Ω → Y whenever x : Ω → X is also a tem-

pered random variable. Thus the induced output characteristic h∗ : XΩ
B → Y Ω

B satisfies

h∗(X
Ω
θ ) ⊆ Y Ω

θ .

Temperedness preservation will be typically a consequence of growth conditions on

the outputs, which is what one would actually check for in examples and applications.

Definition 4.17 (Growth Conditions for Output Functions). Given an output function

h : Ω×X → Y , we label the following growth conditions for ease of reference.

(G1) There exist M0,M1 ∈ (R>0)Ω
θ and n ∈ N such that

‖h(ω, x)‖ 6M0(ω) +M1(ω)‖x‖n , ∀x ∈ X , ∀̃ω ∈ Ω

(tempered polynomial growth). 4

Proposition 4.18. Suppose that h : Ω×X → Y is an output function satisfying (G1).

Then h is temperedness preserving.

Proof. Given any tempered random set D ∈ (2X\{∅})Ω
θ , let r ∈ (R>0)Ω

θ be such that

D(·) ⊆ Br(·)(0). Then

h(·, D(·)) ⊆ BM0(·)+M1(·)(r(·))n(0) .

Now BM0(·)+M1(·)(r(·))n(0) is a tempered random variable in virtue of Example 2.14 and

Lemma 2.24, thus completing the proof.

We end this subsection with a couple of technical properties of temperedness pre-

serving outputs.

Lemma 4.19. Let h : Ω×X → Y be a temperedness preserving output. If ξ : T>0×Ω→

X is a tempered θ-stochastic process in X, then the θ-stochastic process ηξ : T>0×Ω→ Y

defined by

ηξt (ω) := h(θtω, ξt(ω)) , (t, ω) ∈ T>0 × Ω ,

is also tempered.

Proof. Indeed, given a (tempered) rest set D for ξ, it follows straight from Definition

4.16 that h(·, D(·)) is a (tempered) rest set for ηξ.



130

Lemma 4.20. Suppose that h : Ω×X → Y is a temperedness preserving output func-

tion. Then the restriction h∗
∣∣
XΩ
θ

: XΩ
θ → Y Ω

θ of the induced output characteristic to XΩ
θ

is tempered continuous.

Proof. Let (xα)α∈A be any net in XΩ
θ such that xα −→θ x∞ as α → ∞ for some

x∞ ∈ XΩ
θ . Then xα(ω) −→ x∞(ω) as α→∞ for θ-almost every ω ∈ Ω. It then follows

from the continuity of h with respect to its second variable that

[h∗(xα)](ω) = h(ω, xα(ω))

→ h(ω, x∞(ω))

= [h∗(x∞)](ω) as α→∞ , ∀̃ω ∈ Ω .

It remains to show that convergence is tempered.

Let α0 ∈ A and r ∈ (R>0)Ω
θ be such that

‖xα(ω)− x∞(ω)‖ 6 r(ω) , ∀α > α0 , ∀̃ω ∈ Ω .

In other terms,

xα(ω) ∈ Br(ω)(x∞(ω)) , ∀α > α0 , ∀̃ω ∈ Ω ,

where the random set Br(·)(x∞(·)) is tempered by Example 2.27. Since h is tempered-

ness preserving by hypothesis, we conclude that h(·, Br(·)(x∞(·))) is a tempered random

set. Let R be a nonnegative tempered random variable such that

h(ω,Br(ω)(x∞(ω))) ⊆ BR(ω)(0) , ∀̃ω ∈ Ω .

Then

[h∗(xα)](ω) ∈ BR(ω)(0) , ∀α > α0 , ∀̃ω ∈ Ω .

Therefore

‖[h∗(xα)](ω)− [h∗(x∞)](ω)‖ 6 R(ω) + ‖[h∗(x∞)](ω)‖ , ∀α > α0 , ∀̃ω ∈ Ω .

Since R(·) + ‖[h∗(xα)](·) is a tempered random variable, this completes the proof that

convergence is tempered.
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Definition 4.21 (I/O Characteristic). Suppose that an RDSIO (θ, ϕ,U , h) is such

that the underlying RDSI (θ, ϕ,U) has an i/s characteristic K : UΩ
θ → XΩ

θ , and the

output function h preserves temperedness. Then the induced output characteristic

h∗ : XΩ
θ → Y Ω

θ of (θ, ϕ,U , h) is well-defined, and so the map

KY := h∗ ◦ K : UΩ
θ −→ Y Ω

θ

is also well-defined. In this case the system is said to have an input to output (i/o) char-

acteristic and, accordingly, KY is referred to as the input to output (i/o) characteristic

of the system. 4

In the particular case when Y = U , the i/o characteristic is an operator on the space

UΩ
θ of tempered random variables Ω→ U . This operator can be informally interpreted

as the “gain” of the system, a measure of how much a θ-stationary “signal” u changes

when “processed” by the system.

4.3.3 Monotone and Anti-Monotone Outputs

Definition 4.22 (Monotone and Anti-Monotone Outputs). Let (X,6X) and (Y,6Y )

be partially ordered spaces. An output function h : Ω×X → Y is said to be monotone

if

∀̃ω ∈ Ω , x1 6X x2 ⇒ h(ω, x1) 6Y h(ω, x2) .

Analogously, if

∀̃ω ∈ Ω , x1 6X x2 ⇒ h(ω, x1) >Y h(ω, x2) ,

then h is said to be anti-monotone. 4

Most often the underlying partial order will be clear from the context and we shall use

simply 6 to denote either of 6X or 6Y . Furthermore, whenever we refer to a ‘monotone

RDSI,’ an ‘order-preserving map,’ etc, the underlying spaces will be tacitly understood

to be partially ordered.

Lemma 4.23. Suppose that h : Ω×X → Y is a monotone (anti-monotone ) output func-

tion. Then the induced output characteristic h∗ is order-preserving (order-reversing ).
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Proof. Suppose first that h is monotone. By Definition 4.22, there exists a θ-invariant

subset of full measure Ω̃1 ⊆ Ω such that

∀ω ∈ Ω̃1 , p 6X q ⇒ h(ω, p) 6Y h(ω, q) .

Now pick any x1, x2 ∈ XΩ
B such that x1 6 x2 and let Ω̃2 ⊆ Ω be a θ-invariant subset of

full measure such that

x1(ω) 6X x2(ω) , ∀ω ∈ Ω̃2 .

Set Ω̃ := Ω̃1 ∩ Ω̃2. Then Ω̃ is a θ-invariant subset of full measure and

(h∗(x1))(ω) = h(ω, x1(ω)) 6Y h(ω, x2(ω)) = (h∗(x2))(ω) , ∀ω ∈ Ω̃ .

Since x1, x2 ∈ XΩ
B with x1 6 x2 were chosen arbitrarily, this proves h∗ is order preserv-

ing.

If h is anti-monotone, then the proof that h∗ is order-reversing is essentially the

same. One needs only replace occurrences of ‘6Y ’ above by ‘>Y .’

4.4 Small-Gain Theorem

Definition 4.24 (Closed-Loop Trajectory). A θ-stochastic process ξ ∈ SXθ is said to

be a closed-loop trajectory of an RDSIO (θ, ϕ,U , h) (starting at ξ0) if

(1) Y = U ,

(2) the θ-stochastic process ηξ : T>0 × Ω −→ U defined by

ηξt (ω) := h(θtω, ξt(ω)) , t > 0 , ω ∈ Ω ,

belongs to U , and

(3) ξt(ω) = ϕ(t, ω, ξ0(ω), ηξ) for all t > 0 and all ω ∈ Ω. 4

Property (1) is quite natural. It does not make sense to talk about feeding the output

of the system back into it, thus “closing the loop,” if the output and input spaces do

not coincide. The θ-stochastic process ηξ defined in property (2) is the “readout” of the

(θ-stochastic) trajectory ξ on the state space. Naturally, we can only feed this readout
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as an input to the system if it is itself an admissible θ-input. Property (3) then states

that the original trajectory ξ could be recovered by letting the system evolve starting

at ξ0 and subject to the θ-input ηξ.

Lemma 4.25. Suppose that X,U are separable RTA spaces. Let (θ, ϕ,U , h) be a mono-

tone RDSIO with state space X, input and output spaces U , possessing a continuous i/s

characteristic K : UΩ
θ → XΩ

θ , and a monotone or anti-monotone, temperedness preserv-

ing output function h. Given a tempered, eventually precompact closed loop trajectory

ξ : T>0 × Ω → X of (θ, ϕ,U , h), let ηξ : T>0 × Ω → U be the corresponding (tempered,

eventually precompact ) output trajectory along ξ; that is,

ηξt (ω) = h(θtω, ξt(ω)) , ∀(t, ω) ∈ T>0 × Ω .

Let (aτ )τ>τξ and (bτ )τ>τξ be, respectively, lower and upper tails of the pullback trajec-

tories of ηξ. Then

(KY )2k(aτ ) 6 θ-lim ηξ

6 θ-lim ηξ 6 (KY )2k(bτ ) , ∀k ∈ N , ∀τ > τξ .

Proof. K is monotone by Proposition 4.4. So, since

aτ 6 θ-lim ηξ 6 θ-lim ηξ 6 bτ , ∀τ > τξ ,

we have

K(aτ ) 6 K(θ-lim ηξ) 6 K(θ-lim ηξ) 6 K(bτ ) , ∀τ > τξ .

By Theorem 4.12,

K(θ-lim ηξ) 6 θ-lim ξ 6 θ-lim ξ 6 K(θ-lim ηξ) . (4.10)

Combining these with the previous inequalities, we obtain

K(aτ ) 6 θ-lim ξ 6 θ-lim ξ 6 K(bτ ) , ∀τ > τξ . (4.11)

Suppose first that h is monotone. By Lemma 4.23, h∗ preserves the inequalities

above; that is,

KY (aτ ) 6 h∗(θ-lim ξ) 6 h∗(θ-lim ξ) 6 KY (bτ ) , ∀τ > τξ .
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By Lemma 4.26(1) below, we now have

KY (aτ ) 6 θ-lim ηξ 6 θ-lim ηξ 6 KY (bτ ) , ∀τ > τξ .

Now suppose that we have shown that

(KY )k(aτ ) 6 θ-lim ηξ 6 θ-lim ηξ 6 (KY )k(bτ ) , ∀τ > τξ , (4.12)

for some k ∈ N. Then, again, combining the monotonicity of K and h∗, (4.10) and

Lemma 4.26(1), we obtain

K
(
(KY )k(aτ )

)
6 K(θ-lim ηξ) 6 θ-lim ξ

6 θ-lim ξ 6 K(θ-lim ηξ) 6 K
(
(KY )k(bτ )

)
,

hence

(KY )k+1(aτ ) 6 h∗(θ-lim ξ) 6 θ-lim ηξ

6 θ-lim ηξ 6 h∗(θ-lim ξ) 6 (KY )k+1(bτ )

for every τ > τξ. It follows by induction that (4.12) holds for every k ∈ N. In particular,

the conclusion of the lemma holds.

If h is anti-monotone, then h∗ is order-reversing by Lemma 4.23. Thus applying h∗

to each term in the chain of inequalities in (4.11) yields

KY (bτ ) 6 h∗(θ-lim ξ) 6 h∗(θ-lim ξ) 6 KY (aτ ) , ∀τ > τξ .

Applying Lemma 4.26(2) below, we get

KY (bτ ) 6 θ-lim ηξ 6 θ-lim ηξ 6 KY (aτ ) , ∀τ > τξ . (4.13)

Applying K to each term in (4.13) and using (4.10) once again, we get

K
(
KY (bτ )

)
6 θ-lim ξ 6 θ-lim ξ 6 K

(
KY (aτ )

)
, ∀τ > τξ .

Applying h∗ to each term in the inequalities above and using Lemma 4.26(2) below

once again to simplify, we then get

(KY )2(aτ ) 6 θ-lim ηξ 6 θ-lim ηξ 6 (KY )2(bτ ) , ∀τ > τξ .

The argument can now be completed by induction on k just as in the previous case,

using the monotonicity of K, the anti-monotonicity of h∗, (4.10) and Lemma 4.26(2) to

simplify the two terms in the middle after each application of K and h∗, respectively.
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Lemma 4.26. Assume the same hypotheses as in Lemma 4.25.

(1) If h is monotone, then

h∗(θ-lim ξ) 6 θ-lim ηξ 6 θ-lim ηξ 6 h∗(θ-lim ξ) .

(2) If h is anti-monotone, then

h∗(θ-lim ξ) 6 θ-lim ηξ 6 θ-lim ηξ 6 h∗(θ-lim ξ) .

Proof. Since θ-lim ηξ 6 θ-lim ηξ always holds so long as both terms are well-defined

(refer to Definition 2.71), we essentially have only four inequalities to prove. The

argument for each of them goes along the same lines, so we shall provide the details

for only one of the inequalities. Namely, we assume that h is anti-monotone, and prove

that

h∗(θ-lim ξ) 6 θ-lim ηξ .

Let (ατ )τ>τξ and (βτ )τ>τξ be, respectively, lower and upper tails of the pullback

trajectories of ξ. Since

ξt(θ−tω) 6 βτ (ω) , ∀̃ω ∈ Ω , ∀t > τ > τξ ,

it follows from the anti-monotonicity of h that

h(ω, ξt(θ−tω)) > h(ω, βτ (ω)) , ∀̃ω ∈ Ω , ∀t > τ > τξ .

Therefore

aτ (ω) = inf
t>τ

ηξt (θ−tω)

= inf
t>τ

h(ω, ξt(θ−tω))

> h(ω, βτ (ω))

= [h∗(βτ )](ω) , ∀̃ω ∈ Ω , ∀τ > τξ .

We know from Lemma 4.20 that h∗ is tempered continuous. So, by letting τ → ∞ in

the chain of equalities and inequalities above, we obtain

θ-lim ηξ = lim
τ→∞

aτ > lim
τ→∞

h∗(βτ ) = h∗(θ-lim ξ) .

As noted above, the proofs of the other inequalities are entirely analogous.



136

We are now ready to introduce the small-gain condition, then state and prove the

Small-Gain Theorem for RDS.

Definition 4.27 (Small-Gain Condition). We say that an RDSIO (θ, ϕ,U , h) satisfy-

ing the hypotheses of Lemma 4.25 satisfies the Small-Gain Condition if there exists a

(necessarily unique) u∞ ∈ UΩ
θ such that

[(KY )k(u)](ω) −→ u∞(ω)

as k →∞ for θ-almost all ω ∈ Ω, for every u ∈ UΩ
θ . 4

Observe that we do not ask that convergence in the Small-Gain Condition be tem-

pered.

Theorem 4.28 (Small-Gain Theorem). Suppose that X,U are separable RTA spaces.

Let (θ, ϕ,U , h) be a tempered, monotone RDSIO with state space X, input and output

spaces U , possessing a continuous i/s characteristic K : UΩ
θ → XΩ

θ , and a monotone or

anti-monotone, temperedness preserving output function h. If (θ, ϕ,U , h) satisfies the

Small-Gain Condition, then

ξ̌t −→θ K(u∞) as t→∞

for every tempered, eventually precompact closed-loop trajectory ξ : T>0 × Ω → X of

(θ, ϕ,U , h); in other words, every tempered, eventually precompact closed loop trajectory

of (θ, ϕ,U , h) converges (in the pullback, tempered sense ) to K(u∞).

Proof. Consider the notation introduced in the statement and proof of Lemma 4.25,

which also give us

(KY )2k(aτ ) 6 θ-lim ηξ

6 θ-lim ηξ 6 (KY )2k(bτ ) , ∀k ∈ N , ∀τ > 0 .

By the Small-Gain Condition,

lim
k→∞

[(KY )2k(aτ )](ω) = lim
k→∞

[(KY )2k(bτ )](ω) = u∞(ω) , ∀̃ω ∈ Ω ,
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Figure 4.1: Biochemical Circuit

where u∞ ∈ UΩ
θ is given in the definition of the Small-Gain Condition (Definition 4.27).

Thus

u∞ = θ-lim ηξ = θ-lim ηξ = u∞ .

So

η̌ξt −→θ u∞ as t→∞

by Lemma 2.72. It then follows from Theorem 4.11 that

ξ̌t = ξ̌ξ0,η
ξ

t −→θ K(u∞) as t→∞ ,

as we wanted to show.

4.5 Applications

In this section we provide several examples and constructions illustrating how the theory

developed in this work may be applied.

One may allude to the example in the introduction, namely, a biochemical circuit

as illustrated in Figure 4.1, as a prototype for the more general examples discussed in

what follows. As outlined in the introduction, this biochemical circuit may be modeled

by an RDE 

ξ̇1 = a1(θtω)ξ1 +
b1(θtω)

β1(θtω) + g1(ξ3)

ξ̇2 = a2(θtω)ξ2 +
b2(θtω)

β2(θtω) + g2(ξ1)

ξ̇3 = a3(θtω)ξ3 +
b3(θtω)

β3(θtω) + g3(ξ2)

,

for some nondecreasing functions g1, g2, g3 : R>0 → R>0. Note that this could be rewrit-

ten in matrix notation as

ξ̇ = A(θtω)ξ +B(θtω)h(θtω, ξ) ,
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where

A(ω) ≡


a1(ω) 0 0

0 a2(ω) 0

0 0 a3(ω)

 , B(ω) ≡


b1(ω) 0 0

0 b2(ω) 0

0 0 b3(ω)


and

h(ω, ξ) ≡
[

1

β1(ω) + g1(ξ3)

1

β2(ω) + g2(ξ1)

1

β3(ω) + g3(ξ2)

]T
.

The same biochemical network could also be modeled, in discrete time, by an RdE

ξ+
1 = ξ1 + a1(θnω)ξ1 +

b1(θnω)

β1(θnω) + g1(ξ3)

ξ+
2 = ξ2 + a2(θnω)ξ2 +

b2(θnω)

β2(θnω) + g2(ξ1)

ξ+
3 = ξ3 + a3(θnω)ξ3 +

b3(θnω)

β3(θnω) + g3(ξ2)

.

This could be rewritten as

ξ+ = A(θnω)ξ +B(θnω)h(θnω, ξ) ,

where

A(ω) ≡


1 + a1(ω) 0 0

0 1 + a2(ω) 0

0 0 1 + a3(ω)

 ,
and B and h are as in the continuous-time example.

We will give a few explicit examples, in continuous and discrete time, of how the

Small-Gain Theorem may be directly applied to establish the existence and uniqueness

of a globally attracting equilibrium for some classes of non-monotone, nonlinear RDS

such as the ones generated by the RDE or RdE above.

4.5.1 Continuous Time

Suppose that A : Ω→Mn×n(R) and B : Ω→Mn×k(R) are random matrices satisfying

the hypotheses in Examples 3.34 and 4.9; thus

t 7−→ A(θtω) , t > 0 , and t 7−→ B(θtω) , t > 0 ,
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are locally essentially bounded for each ω ∈ Ω, conditions (L1) and (L2) from Example

3.34 are satisfied, all off-diagonal entries of A(ω) are nonnegative for θ-almost every

ω ∈ Ω, and all entries of B(ω) are nonnegative for θ-almost every ω ∈ Ω. We shall

consider the RDE

ξ̇ = A(θtω)ξ +B(θtω)h(θtω, ξ) , t > 0 , ω ∈ Ω , (4.14)

for several classes of nonlinearity h : Ω × Rn>0 → Rk>0. In each of Examples 4.29–4.31

below, we will apply the Small-Gain Theorem to show that the RDS generated by (4.14)

has a unique, globally attracting, positive equilibrium.

Equip Rn and Rk with their respective positive orthant cone-induced partial orders,

thus yielding separable RTA spaces. Let X := Rn>0 and U := Rk>0, which are closed

order-intervals. Under the hypotheses on A and B described above, the RDEI

ξ̇ = A(θtω)ξ +B(θtω)ut(ω) , t > 0 , ω ∈ Ω , u ∈ SU∞ ,

generates a tempered (Example 3.34), monotone (Example 4.9) RDSI (θ, ϕ,SU∞) pos-

sessing a continuous i/s characteristic K : UΩ
θ → XΩ

θ given by

[K(u)](ω) =

∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ , ∀u ∈ UΩ

θ , ∀̃ω ∈ Ω .

Thus the burden of satisfying the hypotheses of the Small-Gain Theorem has now fallen

all on h—the RDS generated by (4.14) will have a unique, globally attracting equilib-

rium whenever h is a monotone or anti-monotone, temperedness preserving output

function such that the RDSIO (θ, ϕ,U , h) satisfies the Small-Gain Condition.

Example 4.29 (Saturated Readouts). Consider an output function h : Ω × X → U

defined by

h(ω, x) :=

(
αj(ω)

βj(ω) + gj(x)

)k
j=1

, (ω, x) ∈ Ω×X ,

where α, β : Ω→ Rk>0 and g : Rn>0 → Rk>0 satisfy the following hypotheses:

(P1) α and β are continuous and uniformly bounded away from zero and infinity along

θ-almost every orbit; more precisely, for θ-almost every ω ∈ Ω,

t 7−→ α(θtω) ∈ Rk , t ∈ R ,
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and

t 7−→ β(θtω) ∈ Rk , t ∈ R ,

are continuous, and there exist an ε = ε(ω)� 0 and an M = M(ω) > 0 such that

ε 6 α(θtω), β(θtω) 6M , ∀t ∈ R ,

and

(P2) g is continuous, order-preserving, sublinear, and bounded.

It follows straight from the monotonicity of g in (P2) that h is anti-monotone.

It follows from (P1) that

0 6 h(θsω, x(θsω)) 6
M(ω)

ε(ω)
, ∀s ∈ R , ∀ω ∈ Ω ,

for any x ∈ XΩ
θ . In particular, h preserves temperedness.

It remains to check that the i/o characteristic KY of (θ, ϕ,SU∞, h) satisfies the Small-

Gain Condition.

For each u ∈ UΩ
θ ,

[KY (u)](ω) =

 αj(ω)

βj(ω) + gj

(∫ 0

−∞
Ξ(σ, 0, ω)B(θσω)u(θσω) dσ

)

k

j=1

, ∀̃ω ∈ Ω .

Fix arbitrarily such an u. Fix arbitrarily any ω ∈ Ω for which [K(u)](ω) is defined and

(P1) holds. For each t ∈ R, we have

[KY (u)](θtω) =

 αj(θtω)

βj(θtω) + gj

(∫ t

−∞
Ξ(σ, t, ω)B(θσω)u(θσω) dσ

)

k

j=1

by a simple, linear change of variables. Set Aω := A(θ·ω), Bω := B(θ·ω), αω := α(θ·ω),

and βω := β(θ·ω). Thus Aω and Bω are locally integrable matrix paths satisfying (L1′),

(L2′), (M1′) and (M2′) in Section D.4, plus αω, βω and g satisfy (i) and (ii) in the

hypotheses of Proposition D.23. Consider the (discrete) dynamical system generated

by the difference equation

ν+ = Hω(ν) ,
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where Hω : Lθ+(Rk)→ Lθ+(Rk) is defined by

[Hω(ν)](t) :=

 (αω)j(t)

(βω)j(t) + gj

(∫ t

−∞
Ξω(σ, t)Bω(σ)ν(σ) dσ

)

k

j=1

, t ∈ R ,

for each ν ∈ Lθ+(Rk). It follows from Proposition D.23 that this discrete system has a

unique, globally attracting fixed point

uω ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) .

Furthermore, as shown in this same proposition, we may choose uω to be continuous,

and such that convergence occurs pointwise; that is,

lim
m→∞

[Hmω (ν)](t) = uω(t) , ∀t ∈ R , ∀ν ∈ Lθ+(Rk) .

We now show that the map u∞ : Ω→ U defined by

u∞(ω) := uω(0) , ω ∈ Ω ,

belongs to UΩ
θ , and is the unique, globally attracting fixed point of KY . Fix arbitrarily

u ∈ UΩ
θ . Then

lim
m→∞

[(KY )m(u)](ω) = lim
m→∞

[Hmω (u)](0) = uω(0) = u∞(ω) , ∀̃ω ∈ Ω .

In particular, u∞ is the θ-almost sure, pointwise limit of measurable maps

ω 7−→ [(KY )m(u)](ω) , ω ∈ Ω , m = 1, 2, 3, . . . ,

hence itself measurable. Fix arbitrarily any ω ∈ Ω for which the limit above holds. By

the uniqueness of the continuous representatives uω, we have

u∞(θtω) = uθtω(0) = uω(t) , ∀t ∈ R .

Therefore t 7→ u∞(θtω), t ∈ R, is bounded. In particular,

sup
t∈R
|u∞(θtω)| e−γ|t| <∞ , ∀γ > 0 .

We conclude that u∞ is tempered, and a fixed point of KY . Since u ∈ UΩ
θ was chosen

arbitrarily, this also shows that u∞ is globally attractive. ♦
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Example 4.30 (Unbounded g). Now consider an output function h : Ω×X → U defined

by

h(ω, x) :=

(
αj(ω) + α̃j(ω)gj(x)

βj(ω) + β̃j(ω)gj(x)

)k
j=1

, (ω, x) ∈ Ω×X ,

where α, α̃, β, β̃ : Ω→ Rk>0 and g : Rn>0 → Rk>0 satisfy

(P1′) α, α̃, β, and β̃ are continuous and uniformly bounded away from zero along the

orbit of ω, and satisfy

αj(θtω)

βj(θtω)
>
α̃j(θtω)

β̃j(θtω)
, ∀t ∈ R , j = 1, . . . , k ,

for θ-almost every ω ∈ Ω, and

(P2′) g is continuous, order-preserving, and sublinear.

Then h is anti-monotone, temperedness preserving, and the i/o characteristic KY of

(θ, ϕ,SU∞, h) satisfies the Small-Gain Condition. This follows along the same lines of

Example 4.29, using Proposition D.24. ♦

Example 4.31 (Periodic θ). In Example 4.29, suppose that the underlying MPDS θ is

T -periodic; that is, there exists T > 0 such that

θt+Tω = θtω , ∀t ∈ R , ∀̃ω ∈ Ω .

Then g need not be bounded in order for the Small-Gain Condition to be satisfied. This

follows along the lines of Example 4.29, via Proposition D.28. ♦

4.5.2 Discrete Time

Each of the continuous-time examples above has a discrete-time counterpart. The

starting point is Example 3.37. Suppose that θ is a discrete MPDS—that is, T = Z—,

and suppose that A : Ω→Mn×n(R) and B : Ω→Mn×k(R) are Borel-measurable maps

with θ-almost everywhere nonnegative entries, and satisfying (l1) and (l2). We shall

consider the RdE

ξ+ = A(θnω)ξ +B(θnω)h(θnω, ξ) , n > 0 , ω ∈ Ω , (4.15)
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for the same classes as nonlinearity h : Ω × Rn>0 → Rk>0 as in the continuous-time

examples above, applying the Small-Gain Theorem once again to show that, for each

such classes, the RDS generated by (4.15) has a unique, globally attracting, positive

equilibrium.

We once again equip Rn and Rk with the partial orders induced by their respective

positive orthant cones. As we saw in Example 3.37,

ξ+ = A(θnω)ξ +B(θnω)un(ω)

generates a tempered RDSI (θ, ϕ,U) possessing an i/s characteristic K : UΩ
θ → XΩ

θ given

by

[K(u)](ω) :=

−1∑
j=−∞

 −1∏
l=j+1

A(θlω)

B(θjω)u(θjω) , ∀u ∈ UΩ
θ , ∀̃ω ∈ Ω .

In view of the assumptions that A and B have θ-almost everywhere nonnegative entries,

the RDSI is also monotone, which can be shown straight from (3.26).

Example 4.32 (Saturated Readouts). Consider an output function h : Ω × X → U

defined by

h(ω, x) :=

(
αj(ω)

βj(ω) + gj(x)

)k
j=1

, (ω, x) ∈ Ω×X ,

where α, β : Ω→ Rk>0 and g : Rn>0 → Rk>0 satisfy the following hypotheses:

(p1) α and β are uniformly bounded away from zero and infinity along θ-almost every

orbit; more precisely, for θ-almost every ω ∈ Ω, there exist an ε = ε(ω) � 0 and

an M = M(ω) > 0 such that

ε 6 α(θmω), β(θmω) 6M , ∀m ∈ Z ,

and

(p2) g is continuous, order-preserving, sublinear, and bounded.

It follows as in Example 4.29 that h is anti-monotone and temperedness. One can then

show, using Proposition D.33, that the i/o characteristic KY : UΩ
θ → UΩ

θ of (θ, ϕ,U , h)

satisfies the Small-Gain Condition. ♦
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Example 4.33 (Unbounded g). Consider an output function h : Ω×X → U defined by

h(ω, x) :=

(
αj(ω) + α̃j(ω)gj(x)

βj(ω) + β̃j(ω)gj(x)

)k
j=1

, (ω, x) ∈ Ω×X ,

where α, α̃, β, β̃ : Ω→ Rk>0 and g : Rn>0 → Rk>0 satisfy

(p1′) α, α̃, β, and β̃ are uniformly bounded away from zero along the orbit of ω, and

satisfy

αj(θmω)

βj(θmω)
>
α̃j(θmω)

β̃j(θmω)
, ∀m ∈ Z , j = 1, . . . , k ,

for θ-almost every ω ∈ Ω, and

(p2′) g is continuous, order-preserving, and sublinear.

Then h is anti-monotone, temperedness preserving, and the i/o characteristic KY of

(θ, ϕ,SU∞, h) satisfies the Small-Gain Condition. This follows along the same lines of

Examples 4.29, using Proposition D.34. ♦

Example 4.34 (Periodic θ). In Example 4.32, suppose that the underlying MPDS θ is

T -periodic; that is, there exists T > 0 such that

θm+Tω = θmω , ∀m ∈ Z , ∀̃ω ∈ Ω .

Then g need not be bounded in order for the Small-Gain Condition to be satisfied. This

follows along the lines of Example 4.29, via Proposition D.38. ♦
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Chapter 5

Future Work

There are a few directions in which this research could be advanced.

Applications to Systems Biology

Although this has been the underlying motivation for this work, no concrete biological

examples have been carefully examined yet in light of the theory just developed. Thus

there is plenty of room for research on this front. The study of concrete examples would

greatly inform which directions the development of this theory should take.

Checking the Small-Gain Condition

As illustrated in Examples 4.29–4.34, the Small-Gain Condition can be somewhat dif-

ficult to check directly. The space UΩ
θ on which the i/o characteristic is defined has

no obvious underlying topology, making it very difficult to frame the problem of check-

ing the Small-Gain Condition within the context of fixed-point theorems. Indeed, all

the examples explicitly considered in this work rely on the construction carried out in

Appendix D using the Thompson metric. Thus many interesting examples not fitting

within the Thompson metric framework, or not satisfying the required boundedness

conditions for it to be applicable, are left out.

With regards to the Thompson metric, we are confident that the constrains in

Appendix D could be relaxed, even if just marginally. The work in the Ph.D thesis of

Mircea-Dan Rus [47] might might provide some of the tools with which this could be

achieved.

Another possible approach would be to look for other topologies with which we could

equip UΩ
θ . Known results from the analogous deterministic theory, as well as hypotheses
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from the biological sciences, will inform the choice for other classes of examples worthy

of scrutiny.

Input to State Stability

Naturally, many of the axioms and definitions in our theory of RDSIO were motivated

by and tailored to fit the monotone systems approach to a Small-Gain Theorem. This

begs the question, what else could be done with this theory? Looking at RDSIO with

other objectives in mind would be the natural step towards consolidating the definitions

presented in this work—or finding out how they should perhaps be modified.

“Input to State Stability” (ISS), in the sense of control theory, seems like a good

candidate. Besides having many powerful applications to engineering [35], it is well-

developed in the deterministic case [51, 53, 31], which could once again be used as a

guide. Could an equally fruitful theory of ISS be developed over the same abstract

RDSIO framework? In other words, are the definitions sensible outside the context

of monotonicity? If not, then what fails? In this case, could the foundations be re-

designed so as to accommodate a unified approach to both monotone systems theory

and ISS?

Some of these questions are already work in progress. The challenges are not unre-

lated to the difficulties described above with expanding the realm of applications of the

Small-Gain Theorem. The lack of an obvious norm in the space of tempered random

variables, with or without partial orders in the picture, makes the definition of ‘input

to state stability’ from the deterministic theory very difficult to translate to RDSI.

Nevertheless, we are optimistic about the prospects. Some preliminary analysis of the

linear case suggests that we should be able to make some progress by thinking about

“random norms;” in other words, looking for at norms as random variables.
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Appendix A

The Hausdorff Distance

Recall that the Hausdorff distance between two nonempty, bounded subsets A and C

of a metric space (X, d) is defined to be the nonnegative real number

dH(A,C) := max

{
sup
a∈A

dist(a,C), sup
c∈C

dist(c, A)

}
,

where

dist(x,E) := inf
y∈E

d(x, y) , x ∈ X , ∅ 6= E ⊆ X ,

is the distance between a point and a nonnempty subset of X.

Given a metric space (X, d), we denote the family of nonempty, bounded, closed sub-

sets ofX by F (X). When (X, d) is a compact metric space, the restriction dH
∣∣
F (X)×F (X)

of the Hausdorff distance to F (X) constitutes a metric with respect to which F (X) is

also compact (Proposition A.5). This property of the Hausdorff distance was used in

Chapter 2 to show that the shell of a compact subset of an RTA space is also compact

(Theorem 2.51).

For the reader’s convenience, we work out in detail the properties of the Hausdorff

metric leading up to Proposition A.5. The proofs follow the presentation in [26], with

a few corrections and simplifications. See also [6, Sections 2.6 and 2.7].

Given a metric space (X, d), a point x ∈ X, and an ε > 0, we denote the ball of

radius ε and centered at x by Bε(x); in other terms,

Bε(x) := {y ∈ X ; d(y, x) < ε} .

For a nonempty subset A ⊆ X and an ε > 0, we then denote

Aε :=
⋃
a∈A

Bε(a) .
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Proposition A.1. Let (X, d) be a metric space. For any nonempty, bounded subsets

A,C ⊆ X, we have

dH(A,C) = inf{ε > 0 ; A ⊆ Cε and C ⊆ Aε} .

In particular, the Hausdorff distance between any nonempty, bounded subsets A,C ⊆ X

is always finite.

Proof. We show that

dH(A,C) 6 inf{ε > 0 ; A ⊆ Cε and C ⊆ Aε} (A.1)

and

dH(A,C) > inf{ε > 0 ; A ⊆ Cε and C ⊆ Aε} . (A.2)

(A.1). Since A and C are bounded by hypothesis, there exists an ε > 0 such that

A ⊆ Cε and C ⊆ Aε. Fix any such an ε arbitrarily. Then

dist(a,C), dist(c, A) < ε , ∀a ∈ A , ∀c ∈ C .

Therefore

dH(A,C) 6 ε .

Taking the infimum on the righthand side of the inequality above over all ε > 0 such

that A ⊆ Cε and C ⊆ Aε, we obtain (A.1). In particular, dH(A,C) is finite.

(A.2). It follows straight from the definition of dH(A,C) that

dist(a,C),dist(c, A) 6 dH(A,C) , ∀a ∈ A , ∀c ∈ C .

Therefore

A ⊆ CdH(A,C)+1/n and C ⊆ AdH(A,C)+1/n , ∀n ∈ N ,

and so

dH(A,C) +
1

n
∈ {ε > 0 ; A ⊆ Cε and C ⊆ Aε} , ∀n ∈ N .

This establishes (A.2).

Proposition A.2. Let (X, d) be a metric space. Then the restriction dH
∣∣
F (X)×F (X)

of

the Hausdorff distance to F (X) is a metric on F (X).
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Proof. It follows straight from the definition that

dH(A,A) = 0 , ∀A ∈ F (X) ,

and

dH(A,C) = dH(C,A) , ∀A,C ∈ F (X) .

It remains to show that

dH(A,C) > 0 , ∀A,C ∈ F (X) : A 6= C , (A.3)

and

dH(A,C) 6 dH(A,D) + dH(D,C) , ∀A,C,D ∈ F (X) . (A.4)

To that end, fix arbitrarily A,C,D ∈ F (X).

(A.3). It follows straight from the definition that dH(A,C) > 0. So (A.3) is equiv-

alent to

dH(A,C) = 0 ⇒ A = C .

Suppose dH(A,C) = 0. Then

dist(a,C) = dist(c, A) = 0 , ∀a ∈ A , ∀c ∈ C .

In other terms, every point of A is an accumulation point of C, and vice-versa. Since A

and C are assumed to be closed, we then have A ⊆ C̄ = C and, likewise, C ⊆ Ā = A.

This yields A = C. Since A,C ∈ F (X) were chosen arbitrarily, this proves (A.3).

(A.4). Pick any ε1, ε2 > 0 such that A ⊆ Cε1 , C ⊆ Aε1 , C ⊆ Dε2 and D ⊆ Cε2 .

Then

A ⊆ Cε1 ⊆ Dε1+ε2 and D ⊆ Cε2 ⊆ Aε2+ε1 ,

and so

dH(A,D) 6 ε1 + ε2

by Proposition A.1. Taking the infimum on the righthand side over all such ε1 and ε2,

it follows, again from Proposition A.1, that

dH(A,D) 6 dH(A,C) + dH(C,D) .

Since A,C,D ∈ F (X) were chosen arbitrarily, this establishes (A.4), completing the

proof of the lemma.
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Recall that a metric space (X, d) is said to be totally bounded if, for every ε > 0,

there exist finitely many points x1, . . . , xk ∈ X such that

X =
k⋃
j=1

Bε(xj) . (A.5)

Lemma A.3. If (X, d) is a totally bounded metric space, then (F (X), dH) is also totally

bounded.

Proof. Given any ε > 0, let x1, . . . , xk ∈ X be such that (A.5) holds. Let

{C1, . . . , C2k−1} := 2{x1,...,xk}\{∅}

be the family of all 2k − 1 nonempty subsets of {x1, . . . , xk}—the order in which the

subsets are labeled is irrelevant. Note that each Cj is finite, hence closed, and so belongs

to F (X). We claim that

F (X) =
2k−1⋃
j=1

BH
2ε(Cj) ,

where we use the superscript ‘H’ in ‘BH
2ε(Cj)’ just to emphasize that we are referring

to a ball in (F (X), dH).

Given any A ∈ F (X), we have

∅ 6= A ⊆
k⋃
j=1

Bε(xj) ,

and so

A ⊆ Cε ,

where

C := {x ∈ {x1, . . . , xk} ; Bε(x) ∩A 6= ∅} 6= ∅ .

Since Bε(x) ∩A 6= ∅ for each x ∈ C, we also have

C ⊆ Aε .

It follows from Proposition A.1 that dH(A,C) 6 ε, showing that A ∈ BH
2ε(C) for some

C ∈ {C1, . . . , C2k−1}.

Since A ∈ F (X) was chosen arbitrarily, this proves the claim. And since ε > 0 was

also chosen arbitrarily, this establishes the lemma.



151

Lemma A.4. If (X, d) is a complete metric space, then (F (X), dH) is also complete.

Proof. Let (An)n∈N be a Cauchy sequence in (F (X), dH). We will show that (An)n∈N

converges to

A∞ := {x ∈ X ; x ∈ {an}n∈N and an ∈ An , ∀n ∈ N} .

We first observe that A∞ is indeed in F (X). To show that A∞ is closed, one may

employ a “diagonal argument.” Let (xk)k∈N in A∞ and x∞ ∈ X be such that

lim
k→∞

xk = x∞ . (A.6)

For each k ∈ N, we have xk ∈ {an}n∈N for some sequence (an)n∈N such that an ∈ An for

each n ∈ N. Thus we may construct a strictly increasing sequence of natural numbers

(nk)k∈N and a sequence (âk)k∈N such that

âk ∈ Ank and d(âk, xk) < 1/k , ∀k ∈ N .

Now âk −→ x∞ as k →∞, showing that x∞ ∈ D∞. Since (xk)k∈N in A∞ and x∞ ∈ X

such that (A.6) holds were chosen arbitrarily, this proves that A∞ is closed. It will

follow from the discussion below that A∞ is also bounded and nonempty.

Fix arbitrarily ε > 0, and let (Nk)k∈N be a strictly increasing sequence of natural

numbers with the property that

m,n > Nk ⇒ dH(Am, An) < ε/2k+1 , ∀k ∈ N.

We claim that

A∞ ⊆ (An)ε and An ⊆ (A∞)ε , ∀n > N1 . (A.7)

In light of Proposition A.1, this implies that

dH(An, A∞) 6 ε , ∀n > N1 .

Since ε > 0 is being chosen arbitrarily, this would show that (An)n∈N converges to A∞.

Thus it remains to prove (A.7).

A∞ ⊆ (An)ε. For any n > N1, we have

dH(Am, An) 6 ε/21+1 , ∀m > N1 ,
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hence

Am ⊆ (An)ε/4 , ∀m > N1 .

Therefore

A∞ ⊆ (An)ε/4 ⊆ (An)ε .

An ⊆ (A∞)ε. Fix arbitrarily n > N1 and x ∈ An. We will recursively construct a

sequence (fk)k∈N with the properties that

fk ∈ ANk , ∀k ∈ N ,

d(x, f1) < ε/22 , and d(fk, fk+1) < ε/2k+1 , ∀k ∈ N .

Since An ⊆ (AN1)ε/22 , there exists an f1 ∈ AN1 such that d(x, f1) < ε/22. Similarly,

AN1 ⊆ (AN2)ε/22 . Therefore there exists an f2 ∈ DN2 such that d(f1, f2) < ε/22.

Now having chosen f1, . . . , fk for which the properties above hold, note that ANk ⊆

(ANk+1
)ε/2k+1 , and then choose fk+1 ∈ ANk+1

such that d(fk, fk+1) < ε/2k+1.

Observe that (fk)k∈N is a Cauchy sequence, for

d(fk, fk+l) 6 d(fk, fk+1) + · · ·+ d(fk+l−1, fk+l)

6 ε/2k+1 + · · ·+ ε/2k+l

6 ε/2k , ∀k, l ∈ N .

We are assuming that (X, d) is complete, therefore there exists an f∞ ∈ X to which

(fk)k∈N converges. In particular, f∞ ∈ A∞, and

d(x, f∞) 6 d(x, f1) + d(f1, f∞) < ε/22 + ε/2 < ε .

This means that x ∈ (A∞)ε. Since x ∈ An was chosen arbitrarily, we conclude that

An ⊆ (A∞)ε.

Since n > N1 was chosen arbitrarily in each case, the argument above proves (A.7).

This completes the proof of the lemma.

Proposition A.5. If (X, d) is a compact metric space, then (F (X), dH) is also compact.

Proof. Since a metric space is compact if, and only if it is complete and totally bounded

[41, Theorem 45.1 on page 276], this follows straight from Lemmas A.3 and A.4.



153

Appendix B

Ordinary Differential Equations

In this appendix we review the notation, terminology, and results from the theory of

(deterministic) ODE used in the construction of RDSI via RDEI in Subsection 3.4.2.

B.1 Righthand Sides

Before we introduce our class of admissible “righthand sides” f : I × X → Rn for a

nonautonomous ODE

ξ̇ = f(t, ξ) , t ∈ I ,

considered over some interval I ⊆ R, we review some properties of Lipschitz functions.

The notation introduced in Subsection 3.4.2 shall be tacitly assumed.

Lemma B.1. Suppose that f : Rn → Rn is a locally Lipschitz, compactly supported map.

Then ‖f‖supp f = ‖f‖Rn. In particular, ‖f‖X = ‖f‖supp f whenever supp f ⊆ X ⊆ Rn.

Proof. Denote K := supp f for short. Since f(x) = 0 for any x ∈ Rn\K, we can readily

see that

sup
x∈K
|f(x)| = sup

x∈Rn
|f(x)| .

The inequality

sup
x,y∈K
x 6=y

|f(x)− f(y)|
|x− y|

6 sup
x,y∈Rn
x 6=y

|f(x)− f(y)|
|x− y|

.

follows straight from the inclusion K ⊆ Rn. Thus it remains to show the converse

inequality.

If x′, y′ ∈ Rn\ intK, then |f(x′)− f(y′)| = 0. So, if x′ 6= y′, then

|f(x′)− f(y′)|
|x′ − y′|

= 0 6 sup
x,y∈K
x 6=y

|f(x)− f(y)|
|x− y|

.
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Now suppose that x′ ∈ intK and y′ ∈ Rn\ intK. Consider the straight line

l := {(1− s)x′ + sy′ ; 0 6 s 6 1}

joining x′ and y′. Since l is connected, there exists a point z′ ∈ l ∩ ∂K. In particular,

z′ belongs to K, f vanishes at z′, and |x′ − y′| > |x′ − z′|. Therefore

|f(x′)− f(y′)|
|x′ − y′|

=
|f(x′)|
|x′ − y′|

6
|f(x′)− f(z′)|
|x′ − z′|

6 sup
x,y∈K
x 6=y

|f(x)− f(y)|
|x− y|

.

We conclude that

sup
x,y∈Rn
x 6=y

|f(x)− f(y)|
|x− y|

6 sup
x,y∈K
x 6=y

|f(x)− f(y)|
|x− y|

,

completing the proof of the result.

Definition B.2 (Righthand Side). A (B(R>0)⊗ B(Rn))-measurable map

f : R>0 × Rn → Rn

is said to be a righthand side if

(Q1) f(t, ·) : Rn → Rn is locally Lipschitz for every t > 0, and

(Q2) for each compact K ⊆ Rn, ∫ b

a
‖f(t, ·)‖K dt <∞

for every b > a > 0. 4

Remark B.3. Any (B(R>0)⊗ B(Rn))-measurable map

f : R>0 × Rn → Rn

satisfying (Q1) is Carathéodory (recall Definition 2.17). Thus, in the definition above,

the measurability of

t 7−→ ‖f(t, ·)‖K , t > 0 ,

in (Q2) follows directly from Lemma C.2. In other words, property (Q2) is, in effect,

only asking that the integral be finite—the requirement that the integrand is measurable

is automatically satisfied by the properties that f be (B(R>0)⊗B(Rn))-measurable and

satisfies (Q1). �
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Recall the smooth bump functions Hk described in Subsection 3.4.2.

Lemma B.4. If f : R>0 × Rn → Rn is a righthand side, then

(t, x) 7−→ Hk(x)f(t, x) , (t, x) ∈ R>0 × Rn

is also a righthand side for any positive integer k. In particular,

‖Hk(·)f(t, ·)‖Rn = ‖Hk(·)f(t, ·)‖Bk(0) , ∀t > 0 .

Proof. Measurability follows from the well-known fact that the product of measurable

functions is measurable.

Fix arbitrarily a positive integer k and a compact K ⊆ Rn. For any x, y ∈ K such

that x 6= y, we have

|Hk(x)f(t, x)−Hk(y)f(t, y)|
|x− y|

6 |Hk(x)| |f(t, x)− f(t, y)|
|x− y|

+
|Hk(x)−Hk(y)|

|x− y|
|f(t, y)|

6 (1 + Lk)‖f(t, ·)‖K ,

therefore Hk(·)f(t, ·) is locally Lipschitz for each t > 0. Since K ⊆ Rn compact was

chosen arbitrarily, this establishes (R1).

Taking the supremum over all distinct x and y in an arbitrary compact K ⊆ Rn,

we obtain

‖Hk(·)f(t, ·)‖K 6 (1 + Lk)‖f(t, ·)‖K , ∀t > 0 .

Thus

t 7−→ ‖Hk(·)f(t, ·)‖K , t > 0 ,

is locally integrable by comparison. This holds for any compact subset K ⊆ Rn, thus

establishing (R2).

Since the positive integer k was chosen arbitrarily, this proves the lemma.

The last statement follows straight from Lemma B.1.
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B.2 Global Solutions

Lemma B.5 (Local Uniqueness). Suppose that f : R>0×Rn → Rn is a righthand side.

Then for each x ∈ Rn, the initial value problem

ξ̇ = f(t, ξ) , 0 6 t < τ , ξ(0) = x , (B.1)

has at most one solution.

Proof. This follows along the lines of the Uniqueness Theorem of Giuliano [1, Theorem

3.5.1 on page 143].

Suppose that ξ, ζ : [0, τ) → Rn are solutions of (B.1); in other words, ξ and ζ are

absolutely continuous, and

dξ

dt
(t) = f(t, ξ(t)) and

dζ

dt
(t) = f(t, ζ(t)) (B.2)

for Lebesgue-almost every t ∈ [0, τ). Fix arbitrarily τ ′ ∈ [0, τ). We may choose b > 0

such that

|ξ(t)− x| 6 b and |ζ(t)− x| 6 b , ∀t ∈ [0, τ ′] .

Set K := Bb(x).

Suppose on the contrary that ξ
∣∣
[0,τ ′]

6= ζ
∣∣
[0,τ ′]

. By continuity, the set

{t ∈ [0, τ ′] ; ξ(t) 6= ζ(t)}

is open, and therefore it can be expressed as the countable union of disjoint open

intervals (relative to [0, τ ′]). Let a < b be the endpoints of any such interval. Thus

ξ(a) = ζ(a) and ξ(t) 6= ζ(t) for all t ∈ (a, b). Set ψ : (a, b)→ R>0 by

ψ(t) := |ξ(t)− ζ(t)|2 = 〈ξ(t)− ζ(t), ξ(t)− ζ(t)〉 , t ∈ (a, b) .

Then ψ is absolutely continuous and ψ(t) > 0 for all t ∈ (a, b). We shall derive a

contradiction by showing that ψ ≡ 0.

By (B.2) and the Cauchy-Schwarz Inequality, we have

dψ

dt
(t) = 2〈f(t, ξ(t))− f(t, ζ(t)), ξ(t)− ζ(t)〉

6 2|f(t, ξ(t))− f(t, ζ(t))| · |ξ(t)− ζ(t)|

6 2‖f(t, ·)‖K · |ξ(t)− ζ(t)|2 ,



157

hence

1

ψ(t)

dψ

dt
(t) 6 2‖f(t, ·)‖K

for Lebesgue-almost every t ∈ (a, b). It now follows by a change of variables that∫ b′

a′

1

ψ(t)

dψ

dt
(t) dt =

∫ ψ(b′)

ψ(a′)

1

u
du 6

∫ b′

a′
2‖f(t, ·)‖K dt

whenever a < a′ < b′ < b. Fix arbitrarily b′ ∈ (a, b). We have

lim
a′→a+

∫ b′

a′
2‖f(t, ·)‖K dt =

∫ b′

a
2‖f(t, ·)‖K dt <∞

by (Q2), while, on the other hand,

lim
a′→a+

∫ ψ(b′)

ψ(a′)

1

u
du =∞ ,

since ψ(a′) −→ 0 as a′ → a+. This is a contradiction.

We conclude that ξ
∣∣
[0,τ ′]

= ζ
∣∣
[0,τ ′]

. Since τ ′ ∈ [0, τ) was chosen arbitrarily, this

completes the proof that ξ = ζ.

Lemma B.6 (Gronwall’s Inequality). Suppose that α : [τ1, τ2] → R>0 is integrable,

µ : [τ1, τ2]→ R>0 is continuous, c > 0, and

µ(t) 6 c+

∫ t

τ1

α(s)µ(s) ds , ∀t ∈ [τ1, τ2] .

Then

µ(t) 6 c e
∫ t
τ1
α(s) ds

, ∀t ∈ [τ1, τ2] .

Proof. See [52, Lemma C.3.1 on page 475].

Proposition B.7 (Global Solutions for ODE). Suppose that f : R>0 × Rn → Rn is a

righthand side satisfying the growth condition

|f(t, x)| 6 α(t)|x|+ β(t) , ∀t > 0 , ∀x ∈ Rn , (B.3)

for some locally integrable functions α, β : R>0 → R>0. Then the ODE

ξ̇ = f(t, ξ) , t > 0 , (B.4)
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generates a continuous global flow ϕ : R>0 × Rn → Rn, uniquely determined by the

properties that, for each x ∈ Rn,

ϕ(0, x) = x ,

ϕ(·, x) : R>0 → Rn is absolutely continuous, and

d

dt
ϕ(t, x) = f(t, ϕ(t, x))

for Lebesgue-almost every t > 0.

Proof. Local existence follows from the Existence Theorem of Carathéodory, since

|f(t, x)| 6 ‖f(t, ·)‖K , ∀(t, x) ∈ R>0 ×K ,

and

t 7−→ ‖f(t, ·)‖K , t > 0 ,

is locally integrable (by (Q2)) for every compactK ⊆ Rn (see, for instance, [10, Theorem

1.1 on page 43]). Local uniqueness follows from Lemma B.5 above.

It follows from growth condition (B.3) and Lemma B.6 that no solution of (B.4)

blows up in finite time. Thus maximal solutions are globally defined.

Continuity with respect to t and x can also be patched up from the hypotheses

by means of Lemma B.6. Combining (B.3) and Lemma B.6, one can show that ϕ is

bounded on [0, T ] ×K for finite T > 0 and compact K ⊆ Rn. Another application of

Lemma B.6 to the righthand side of

|ϕ(t1, x1)− ϕ(t2, x2)| 6 |ϕ(t1, x1)− ϕ(t1, x2)|+ |ϕ(t1, x2)− ϕ(t2, x2)|

yields local continuity, completing the proof.

A standard technique for establishing measurability is to realize the function one is

trying to show to be measurable as the limit of a sequence of maps which are known

to be measurable. The result below provides a “canonical” way of realizing the flow of

an ODE as the limit of a sequence defined recursively starting from a constant map,

in the case when the righthand side is compactly supported “uniformly in t.” This,

together with the the measurability properties discussed in the next appendix, is the
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key ingredient in the verification of property (I1) for RDSI generated by θ-righthand

sides in the proof of Theorem 3.42.

Theorem B.8 (Canonical Limit Representation). Suppose that f : R>0 × Rn → Rn is

a righthand side which is compactly supported uniformly in t ∈ R>0; that is, such that

supp f(t, ·) ⊆ K , ∀t > 0 ,

for some compact K ⊆ Rn. Let ϕ : R>0 × Rn → Rn be the global flow generated by the

ODE

ξ̇ = f(t, ξ) , t > 0 . (B.5)

Then

ϕ(t, x) = lim
m→∞

ϕm(t, x) , ∀(t, x) ∈ R>0 × Rn , (B.6)

where (ϕm)m∈Z>0
is the sequence of R>0 × Rn → Rn maps defined recursively by

ϕ0(t, x) := x , (t, x) ∈ R>0 × Rn ,

and

ϕm(t, x) := x+

∫ t

0
f(s, ϕm−1(s, x)) ds , (t, x) ∈ R>0 × Rn , m > 1 .

Proof. First note that f satisfies growth condition (B.3) with α = 0 and β = ‖f(·, ·)‖K .

Thus (B.5) indeed generates a global flow ϕ by Proposition B.7.

Fix arbitrarily x ∈ Rn . By Lemma B.1,

‖f(t, ·)‖Rn = ‖f(t, ·)‖K <∞ , ∀t > 0 .

Consider the primitive

F : R>0 −→ R>0

t 7−→
∫ t

0
‖f(s, ·)‖Rn ds

.

We will show by induction on m ∈ N that

|ϕm(t, x)− ϕm−1(t, x)| 6 [F (t)]m

m!
, ∀t > 0 , ∀m ∈ N . (B.7)
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For m = 1, we have

|ϕ1(t, x)− ϕ0(t, x)| 6
∫ t

0
|f(s, x)| ds

6
∫ t

0
‖f(s, ·)‖Rn ds

=
[F (t)]1

1!
, ∀t > 0 .

Now suppose (B.7) has been shown to hold for m = 1, . . . , k, for some k > 1. Then

|ϕk+1(t, x)− ϕk(t, x)| 6
∫ t

0
|f(s, ϕk(s, x))− f(s, ϕk−1(s, x))| ds

6
∫ t

0
‖f(s, ·)‖Rn |ϕk(s, x)− ϕk−1(s, x)| ds

6
∫ t

0
F ′(s)

[F (s)]k

k!
ds

=
[F (t)]k+1

(k + 1)!
, ∀t > 0 .

This completes the induction argument, establishing (B.7).

Now fix arbitrarily T > 0. We abuse notation and denote the restrictions ϕ
∣∣
[0,T ]×{x}

and ϕm
∣∣
[0,T ]×{x} by ϕ and ϕm, respectively. Since F is nondecreasing, we have

|ϕm+k(t, x)− ϕm(t, x)| 6
m+k∑
j=m+1

|ϕj(t, x)− ϕj−1(t, x)|

6
m+k∑
j=m+1

[F (T )]j

j!
, ∀t ∈ [0, T ] , ∀m > 0 , ∀k > 0 .

Since the series
∞∑
j=0

[F (T )]j

j!
= eF (T )

converges, we conclude that (ϕm)m∈Z>0
is a Cauchy sequence. Let ϕ̃ : [0, T ] → Rn be

the limit,

ϕ̃(t) := lim
m→∞

ϕm(t, x) , t ∈ [0, T ] .

By the continuity hypothesis in (Q1), it follows that

lim
m→∞

f(t, ϕm−1(t, x)) = f(t, ϕ̃(t)) , ∀t ∈ [0, T ] .

Since

|f(t, ϕm−1(t, x))| 6 ‖f(t, ·)‖Rn , ∀t ∈ [0, T ] , ∀m ∈ N ,
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it then follows from Lebesgue Dominated Convergence Theorem that

ϕ̃(t) =

∫ t

0
f(s, ϕ̃(t)) ds , ∀t ∈ [0, T ] .

By Lemma B.5, ϕ = ϕ̃.

Since x ∈ Rn, and then T > 0 were chosen arbitrarily, this proves (B.6), completing

the proof of the theorem.
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Appendix C

Measure and Integration

Though important, interesting and often nontrivial, measurability issues are usually a

distraction from the main ideas when one is talking about random dynamical systems.

Thus we collect less notable technicalities concerning measurability into this appendix.

We refer to the definitions and notational conventions laid down in Chapter 2.

C.1 Carathéodory Functions

Recall the definition of Carathéodory functions—functions which are measurable with

respect to the first variable and continuous with respect to the second (Definition 2.17).

We derive a couple of properties posessed by such functions.

Lemma C.1. Let (T,F) be a measurable space, X be a separable topological space, and

f : T ×X → R be a Carathéodory function. Then the function F : T → R defined by

F (t) := sup
x∈X

f(t, x) , t ∈ T ,

is F-measurable.

Proof. Let (xk)k∈N be a dense sequence in X. Since f is assumed to be Carathéodory,

the projection map f(·, xk) : T → R is measurable for each k ∈ N. Therefore it is

enough to show that

F (t) = sup
k∈N

f(t, xk) , ∀t ∈ T . (C.1)

Fix t ∈ T arbitrarily, and let (ym)m∈N be a sequence in X such that

F (t) = lim
m→∞

f(t, ym) .

For each m ∈ N, pick km ∈ N such that

|f(t, xkm)− f(t, ym)| < 1/m .
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This is possible since f(t, ·) is continuous and (xk)k∈N is dense in X. Then

lim
m→∞

f(t, xkm) = lim
m→∞

f(t, ym) = F (t) .

Since f(t, xkm) 6 F (t) for every m ∈ N, this proves (C.1). And since t ∈ T was chosen

arbitrarily, this proves the result.

Lemma C.2. Suppose that f : R>0 × Rn → Rn is Carathéodory, and let X be any

nonempty subset of Rn. Then the R>0 → R map defined by

t 7−→ ‖f(t, ·)‖X , t > 0 ,

is B(R>0)-measurable.

Proof. Since X is separable and |f | is also Carathéodory, it follows straight from Lemma

C.1 that

t 7−→ sup
x∈X
|f(t, x)| , t > 0 ,

is B(R>0)-measurable.

Now set

C := (X ×X)\{(x, y) ∈ X ×X ; x = y} .

Then

(t, (x, y)) 7−→ |f(t, x)− f(t, y)|
|x− y|

, (t, (x, y)) ∈ R>0 × C ,

is also Carathéodory. Furthermore, C ⊆ R2n is separable. Thus, again from Lemma

C.1,

t 7−→ sup
x,y∈X
x 6=y

|f(t, x)− f(t, y)|
|x− y|

= sup
(x,y)∈C

|f(t, x)− f(t, y)|
|x− y|

, t > 0 ,

is B(R>0)-measurable.

Putting these two together, we conclude that

t 7−→ ‖f(t, ·)‖X = sup
x∈X
|f(t, x)|+ sup

x,y∈X
x 6=y

|f(t, x)− f(t, y)|
|x− y|

, t > 0 ,

is B(R>0)-measurable.
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C.2 Products of Measurable Spaces

This section is devoted to establishing Proposition C.7, which was applied in Subsection

3.4.2 to the study of measurability properties of RDSI generated by RDEI.

The following result is a standard fact from product measures, stated here for the

reader’s convenience.

Lemma C.3. Let (X,F), (Y,G), (Z,H) be measurable spaces.

(a) If E ∈ F ⊗ G, then

Ex := {y ∈ Y ; (x, y) ∈ E} ∈ G , ∀x ∈ X ,

and likewise

Ey := {x ∈ X ; (x, y) ∈ E} ∈ F , ∀y ∈ Y .

(b) If f : X×Y → Z is an (F⊗G)-measurable map, then the projection maps fx : Y →

Z and fy : X → Z, defined by

fx(y) := f(x, y) =: fy(x) , (x, y) ∈ X × Y ,

are, respectively, G-measurable and F-measurable for all x ∈ X and all y ∈ Y .

Proof. See [7, Lemma 10.6 on page 116].

Lemma C.4. Suppose that (X,F) is a measurable space, and that A ∈ B(R>0) ⊗ F .

Then

F : R>0 ×X −→ R>0

(t, x) 7−→
∫ t

0
χA(s, x) ds

is (B(R>0)⊗F)-measurable.

Proof. Since R>0 is separable, it is enough to show that F is Carathéodory [27, Propo-

sition 1.6 on page 142].

Continuity with respect to t ∈ R>0. Fix arbitrarily x ∈ X. From Lemma C.3,

Ax := {s ∈ R>0 ; (s, x) ∈ A} ∈ B(R>0) ,
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therefore

s 7−→ χA(s, x) = χAx(s) , s ∈ R>0 , (C.2)

is measurable. Thus (C.2) is indeed locally integrable, from which it then follows that

F (·, x) is continuous.

F-masurability with respect to x ∈ X. Fix arbitrarily t ∈ R>0, and denote the

restriction to [0, t] of the Borel measure on B(R>0) by µt. Then

F (t, x) =

∫ t

0
χAx(s) ds = µt(A

x) , ∀x ∈ X .

Upon defining an arbitrary finite measure on (X,F)—say, the atomic measure on an

arbitrarily chosen point of X—, we may then apply [7, Lemma 10.8 on page 117] to

conclude that F (t, ·) is F-measurable.

Corollary C.5. Suppose that (X,F) is a measurable space, and that

f : R>0 ×X −→ R>0

is a simple function. Then

F : R>0 ×X −→ R>0

(t, x) 7−→
∫ t

0
f(s, x) ds

is also (B(R>0)⊗F)-measurable.

Proof. This follows straight from Lemma C.4. Upon rewriting

f =
k∑
j=1

ajχAj

for some a1, . . . , ak > 0 and some A1, . . . , Ak ∈ B(R>0)⊗F , we obtain

F (t, x) =
k∑
j=1

aj

∫ t

0
χAj (s, x) ds , ∀(t, x) ∈ R>0 ×X .

So, F is a linear combination of (B(R>0) ⊗ F)-measurable functions, and thus itself

(B(R>0)⊗F)-measurable.
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Corollary C.6. Suppose that (X,F) is a measurable space, and that

f : R>0 ×X −→ R>0

is a (B(R>0)⊗F)-measurable function such that f(·, x) : R>0 → R>0 is locally integrable

for each x ∈ X. Then

F : R>0 ×X −→ R>0

(t, x) 7−→
∫ t

0
f(s, x) ds

is also (B(R>0)⊗F)-measurable.

Proof. Let (fm)m∈N be a nondecreasing sequence of simple functions

R>0 ×X −→ R>0

which converges pointwise to f . Set

Fm : R>0 ×X −→ Rn

(t, x) 7−→
∫ t

0
fm(s, x) ds

, m = 1, 2, 3, . . . .

By Corollary C.5, each Fm is (B(R>0)⊗F)-measurable. By the Monotone Convergence

Theorem,

F (t, x) =

∫ t

0
f(s, x) ds

= lim
m→∞

∫ t

0
fm(s, x) ds

= lim
m→∞

Fm(t, x) , ∀(t, x) ∈ R>0 ×X .

As the limit of a sequence of (B(R>0) ⊗ F)-measurable maps, F is (B(R>0) ⊗ F)-

measurable.

Proposition C.7. Suppose that (X,F) is a measurable space, and that

f : R>0 ×X −→ Rn

is a (B(R>0)⊗F)-measurable function such that f(·, x) : R>0 → Rn is locally integrable

for each x ∈ X. Then

F : R>0 × Ω −→ Rn

(t, x) 7−→
∫ t

0
f(s, x) ds



167

is also (B(R>0)⊗F)-measurable.

Proof. Indeed, write

f = (f1, . . . , fn) = (f+
1 − f

−
1 , . . . , f

+
n − f−n ) ,

where f+
j := max{0, fj} and f−j := max{−fj , 0} are, respectively, the positive and

negative parts of each coordinate fj of f . Then

F (t, x) ≡
(∫ t

0
f+

1 (s, x) ds−
∫ t

0
f−1 (s, x) ds, . . . ,

∫ t

0
f+
n (s, x) ds−

∫ t

0
f−n (s, x) ds

)
.

Since f+
1 , f

−
1 , . . . , f

+
n , f

−
n satisfy the hypotheses of Corollary C.6, this shows that F is

(B(R>0)⊗F)-measurable.

C.3 θ-Stochastic Processes

Lemma C.8. Suppose θ is an MPDS and X is a topological space. If q : Ω → X is

Borel-measurable, then

q̄ : T × Ω −→ X

(t, ω) 7−→ q(θtω)

is (B(T )⊗F)-measurable.

Proof. Indeed, given any Borel subset B ⊆ X, we have

(q̄)−1(B) = θ−1(q−1(B)) .

Now q−1(B) ∈ F by hypothesis. So θ−1(q−1(B)) ∈ B(T ) ⊗ F by the measurability

properties of an MPDS (Definition 2.1). We conclude that (q̄)−1(B) ∈ B(T )⊗F . Since

B ∈ B(X) was arbitrary, this proves q̄ is a θ-stochastic process.

Corollary C.9. Under the same assumptions as in Lemma C.8,

t 7−→ q(θtω) , t ∈ T ,

defines a B(T )-measurable map for every ω ∈ Ω.

Proof. This follows from combining Lemma C.8 with Lemma C.3(b).
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Lemma C.10. The pullback of a θ-stochastic process is a θ-stochastic process.

Proof. Given a θ-stochastic process q : T>0 × Ω→ X, we may look at its pullback q̌ as

the composition of q with the map

(t, ω) 7−→ (t, θ−tω) , (t, ω) ∈ T>0 × Ω . (C.3)

The projection

(t, ω) 7−→ θ−tω , (t, ω) ∈ T>0 × Ω , (C.4)

is the composition of θ : T × Ω→ Ω with

(t, ω) 7−→ (−t, ω) , (t, ω) ∈ T>0 × Ω . (C.5)

Since θ and (C.5) are measurable, so is (C.4). The first coordinate of (C.3) is readily

seen to be measurable. We conclude that (C.3) is measurable.

This shows that q̌ is the composition of measurable maps. We conclude that q̌ is

measurable.

Lemma C.11. The ρ-shift of a θ-stochastic process is a θ-stochastic process.

Proof. Fix arbitrarily a θ-stochastic process q : T>0×Ω→ X and an s > 0. Then ρs(q)

is the composition of q with

(t, ω) 7−→ (t+ s, θsω) , (t, ω) ∈ T>0 × Ω ,

both coordinates of which are readily seen to be measurable. This shows that ρs(q) is

measurable.

Lemma C.12. The θ-concatenation of θ-stochastic processes is a θ-stochastic process.

Proof. Fix arbitrarily θ-stochastic processes q, r : T>0 × Ω → X, and an s > 0. Note

that

(q♦sr)t(ω) =


qt(ω) , 0 6 t < s

[ρs(r)]t(ω) , s 6 t
, ∀(t, ω) ∈ T>0 × Ω .
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Fix arbitrarily an A ∈ B. Since q is measurable by hypothesis and ρs(r) is measur-

able by Lemma C.11, we have

q−1(A) ∈ B(T>0)⊗F and [ρs(r)]
−1(A) ∈ B(T>0)⊗F .

Thus

(q♦sr)
−1(A) =

(
q−1(A) ∩ [0, s)× Ω

)
∪
(
[s,∞)× Ω

)
∈ B(T>0)⊗F .

Since A ∈ B was chosen arbitrarily, this completes the proof.
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Appendix D

The Thompson Metric

In Definition 2.39 we defined cones in the context of topological vector spaces and

asked that they be closed with respect to the underlying topology. This requirement

guarantees that the partial order induced by the cone is compatible with the topology

of the space, in the sense that

lim
n→∞

xn 6 lim
n→∞

yn (D.1)

whenever (xn)n∈N and (yn)n∈N are sequences such that

xn 6 yn , ∀n ∈ N ,

and their limits exist. In this appendix we will drop the requirement that the cone

be closed. In fact, we will (at first) ignore the underlying topological structure of the

vector space altogether, and introduce a metric which depends solely on the relationship

between the partial order and the linear structure. This will provide us with a tool to

look for fixed points of operators defined on partially ordered vector spaces arising

without any obvious underlying topology.

D.1 Basic Definitions

Definition D.1 (Algebraic Cone). Let V be a real vector space. An (algebraic) cone

in V is a nonempty subset V+ ⊆ V such that

(1) V+ + V+ ⊆ V+,

(2) αV+ ⊆ V+ for every α > 0, and

(3) V+ ∩ (−V+) ⊆ {0}. 4
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An algebraic cone induces a partial order in the underlying vector space just like

in Definition 2.40. As before, we will abuse the terminology by often referring to any

vector in V+ as nonnegative. Although it no longer makes sense to wonder about when

(D.1) may hold, it follows from axioms (1) and (2) in Definition D.1 that this partial

order is still compatible with the linear structure of the vector space, in the sense that

x 6 y and x′ 6 y′ ⇔ x+ x′ 6 y + y′ ,

x 6 y ⇔ tx 6 ty , ∀t > 0 ,

and

x 6 y ⇔ tx > ty , ∀t < 0 .

Throughout this appendix this will be our working definition of ‘cone.’ Whenever the

vector space in question is also equipped with a topology, and the cone is closed with

respect to the this topology, we shall explicitly state so.

Let V be a real vector space which is partially ordered by a cone V+ ⊆ V . Then

x, y ∈ V+ , x ∼ y ⇔ ∃c > 0 : c−1x 6 y 6 cx

defines an equivalence relation in V+. This equivalence relation partitions V+ into its

parts. Note that one of the parts is the singleton C0 := {0}, consisting of just the origin.

We shall refer to all other parts as the nonzero parts of V+, and define a metric on each

of them.

Example D.2 (The Parts of Rn>0 ⊆ Rn). The parts of the cone R>0 ⊆ R are

{0} and R>0 .

The parts of R2
>0 ⊆ R2 are

{0} , {0} × R>0 , R>0 × {0} , and R>0 × R>0 .

In general, Rn>0 ⊆ Rn will have 2n parts, namely, {0}, Rn>0, and the projections of Rn>0

over each of the lower-dimensional coordinate subspaces. ♦

Note that, whenever c−1x 6 y 6 cx for some x, y ∈ V+\{0} and c > 0, we must

indeed have c > 1. For since x > 0 and (c− c−1)x > 0, we must also have c− c−1 > 0.

Thus the definition below is well-posed.



172

Definition D.3 (Thompson Metric). For each nonzero part C of the cone V+, the map

dC : C × C → R>0, defined by

dC(x, y) := inf{log c ; c−1x 6 y 6 cx} , x, y ∈ C ,

is called the Thompson metric on C. 4

It is not difficult to show that dC is always a pseudometric [9, Proposition 3.7(1) on

page 12]. If V is a topological space and V+ is closed, then

x, y ∈ C , dC(x, y) = 0 ⇔ x = y ,

yielding a metric. Indeed, if dC(x, y) = 0, then there exists a sequence (cn)n∈N such

that

c−1
n x 6 y 6 cnx , ∀n ∈ N , and lim

n→∞
cn = 1 .

By (D.1), we then have x 6 y 6 x. Thus x = y. However it is possible to express

necessary and sufficient conditions for dC to be a metric strictly in algebraic terms.

Definition D.4 (Almost Archimedean Cones). Let V be a real vector space. An

(algebraic) cone V+ ⊆ V will be said to be algebraically almost Archimedean if

x, y ∈ V and − ty 6 x 6 ty , ∀t > 0 ⇒ x = 0 .

If V is a real normed space, then an (algebraic) cone V+ ⊆ V will be said to be

topologically almost Archimedean if V+ ∩W is either empty or an (algebraic) cone for

every two-dimensional subspace W ⊆ V . 4

Lemma D.5. Suppose V+ is a closed cone in a normed vector space V . Then V+ is

both algebraically and topologically almost Archimedean.

Proof. Algebraically almost Archimedean. Suppose x, y ∈ V are such that

−ty 6 x 6 ty , ∀t > 0 .

Letting t→ 0, we get 0 6 x 6 0, which then yields x = 0.
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Topologically almost Archimedean. Let W ⊆ V be any two-dimensional subspace.

Since W is finite-dimensional, it is closed. Thus V+ ∩W is closed cone. In particular,

V+ ∩W = V+ ∩W

is a cone.

Remark D.6. When V is a real normed space, it can actually be shown that both

definitions are equivalent, so we would have only had to check either one in the proof

above. But since this fact will not be needed here, we will avoid the detour to prove

that. Nevertheless, when talking about almost Archimedean cones, we will drop the

qualifiers ‘algebraically’ or ‘topologically’ unless we would like to emphasize them. �

Proposition D.7. Suppose that V+ is an (algebraic ) cone in a real vector space V .

For any part C ⊆ V+, the Thompson metric dC is a metric if, and only if V+ is almost

Archimedean.

Proof. See [9, Proposition 3.7(2) on pages 12–13].

Unless there is any risk of ambiguity, we will omit the index ‘C’ designating the

part, writing simply ‘d’ for the Thompson metric on any part. We set d(0, 0) = 0 by

convention.

We shall need one last fact about almost Archimedean cones.

Lemma D.8. Suppose V+ and W+ are (algebraic ) cones in a real vector space V , and

that W+ ⊆ V+.

(1) If V+ is algebraically almost Archimedean, then W+ is also algebraically almost

Archimedean.

(2) If V is a normed space and V+ is topologically almost Archimedean, then W+ is

also topologically almost Archimedean.

Proof. (1) Given any x, y ∈ V ,

−ty 6W+ x 6W+ ty , ∀t > 0 ⇒ −ty 6V+ x 6V+ ty , ∀t > 0

⇒ x = 0 ,
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since V+ is algebraically almost Archimedean by hypothesis. Thus W+ is also alge-

braically almost Archimedean.

(2) For any two-dimensional subspace U ⊆ V , we have

W+ ∩ U ⊆ V+ ∩ U .

Now V+ ∩ U is either empty or an (algebraic) cone, since we are assuming V+ to be

topologically almost Archimedean. In particular, W+ ∩ U cannot contain any nontrivial

subspaces of V . Thus W+ ∩ U is itself either empty or an (algebraic) cone. Since the

two-dimensional subspace U ⊆ V was chosen arbitrarily, we conclude that W+ is also

topologically almost Archimedean.

The ‘Thompson metric’ was introduced by A. C. Thompson in [54], where he showed

that, under the assumption that the underlying cone be normal, this metric is complete,

and proved a fixed point result for a class of nonlinear operators which are contractive

with respect to the metric. The Thompson metric is related to the Hilbert projective

metric, a thorough account of which is given in [43, 44]. Properties of the Thompson

metric were derived solely in terms of the relationship between the underlying par-

tial order and the linear structure of the vector space under consideration—that is,

disregarding its topological structure, if any—by Ş. Cobzaş and M.-D. Rus in [9].

D.2 Basic Properties

Lemma D.9. Given a real vector space V , partially ordered by a cone V+ ⊆ V , and

β ∈ V+, let

τβ : V+ −→ V+

x 7−→ β + x

be the translation of V+ by β. Then τβ is nonexpansive with respect to the Thompson

metric.

Proof. Indeed, given any x, y ∈ V+ and c > 1 such that

c−1x 6 y 6 cx ,
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we have

c−1β 6 β 6 cβ .

By adding up these inequalities term-wise, we get

c−1(β + x) = c−1τβ(x) 6 τβ(y) 6 cτβ(x) = c(x+ β) .

This shows that τβ(x) and τβ(y) are in the same part of V+ whenever x and y are.

Furthermore, in this case, d(τβ(x), τβ(y)) 6 d(x, y).

Order-preserving sublinear maps, which come up naturally in many applications,

interact particularly well with the Thompson metric. Indeed, they are nonexpansive

with respect to d, as we show in Lemma D.14.

Definition D.10 (Sublinear Maps). Let V,W be real vector spaces, partially ordered

by cones V+ ⊆ V and W+ ⊆W . A map g : V+ →W+ is said to be sublinear if

λg(x) 6 g(λx) (D.2)

for all λ ∈ [0, 1], for all x ∈ V+. 4

Equivalently, g : V+ →W+ will be sublinear if

g(λx) 6 λg(x) , ∀λ > 1 , ∀x ∈ V+ . (D.3)

Remark D.11. Observe that any map g : V+ → W+ will satisfy (D.2), for any x ∈ V+,

with λ = 0 or λ = 1. So we need only check it for λ ∈ (0, 1). Similarly, (D.3) always

holds for λ = 1. �

Remark D.12. If g∗ : V → W is linear and g∗(V+) ⊆ W+, then g∗ is also order-

preserving. Indeed,

g∗(y)− g∗(x) = g∗(y − x) > 0

whenever y > x > 0. Moreover, the restriction

g := g∗
∣∣
V+

: V+ →W+

is sublinear, for the equality holds in either (D.2) or (D.3). �
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Lemma D.13. Let U , V , and W be real vector spaces, partially ordered by cones U+,

V+, and W+, respectively. If the maps g : U+ → V+ and h : V+ → W+ are sublinear,

and h is order-preserving, then their composition h ◦ g : U+ →W+ is sublinear.

Proof. Indeed, given any x ∈ U+ and any λ ∈ (0, 1), we have

h(g(λx)) 6 h(λg(x)) 6 λh(g(x)) .

The first inequality follows from the sublinearity of g combined with the monotonicity

of h. The second inequality follows from the sublinearity of h.

Lemma D.14. Suppose that V and W are real vector spaces, partially ordered by cones

V+ ⊆ V and W+ ⊆ W , respectively. If g : V+ → W+ is order-preserving and sublinear,

then g is nonexpansive with respect to the Thompson metric; more precisely, whenever

x and y are in the same part of V+, g(x) and g(y) are also in the same part of W+,

and, in this case,

d(g(x), g(y)) 6 d(x, y) .

Proof. Pick any x and y which are in the same part of V+, and any c > 1 such that

c−1x 6 y 6 cx . (D.4)

Then

c−1y 6 x 6 cy .

Thus by sublinearity and monotonicity,

c−1g(x) 6 g(c−1x) 6 g(y) 6 g(cx) 6 cg(x) , (D.5)

and

c−1g(y) 6 g(c−1y) 6 g(x) 6 g(cy) 6 cg(y) .

These two inequalities combined show that g(x) = 0 if, and only if g(y) = 0. If this

is the case, then d(g(x), g(y)) = 0 6 d(x, y). Otherwise, both g(x) and g(y) are in the

same nonzero part of W+, and it follows from (D.5), plus the arbitrary choice of c > 1

satisfying (D.4) that d(g(x), g(y)) 6 d(x, y), completing the proof.
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Lemma D.15. If V+ is a solid, closed cone in a normed space V , then intV+ is a part.

Proof. Given any u, v � 0, let γ, δ > 0 be such that Bγ(u), Bδ(v) ⊆ V+. Then

Bγ(u) ⊆ B‖u‖+γ(0)

and (see the proof of Lemma 2.43)

Bδ(0) ⊆ [−v, v] .

Therefore

Bγ(u) ⊆ [−Rv,Rv] ,

with

R :=
‖u‖+ γ

δ
.

Similarly,

Bδ(v) ⊆ [−Su, Su] ,

with

S :=
‖v‖+ δ

γ
.

We conclude that

c−1v 6 u 6 cv ,

where

c := max{R,S} .

This shows that intV+ is contained in a part C of V+.

To see that C ⊆ intV+ also, pick any u ∈ C, any v ∈ intV+, and let c > 1 be such

that c−1v 6 u 6 cv. In particular,

−u 6 −c−1v 6 c−1v 6 u ,

thus

[−c−1v, c−1v] ⊆ [−u, u] .

Let δ > 0 be such that Bδ(v) ⊆ V+. Then Bδ(0) ⊆ [−v, v], so indeed

Bc−1δ(0) ⊆ [−c−1v, c−1v] ⊆ [−u, u] .
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Now

Bc−1δ(u) ⊆ V+

showing that u ∈ intV+. This completes the proof that V+ is a part.

Observe that if x, y, z are in the interior of V+, then so are x + z and y + z. In

particular, x, y, x+ z, y + z are all in the same1 part of V+.

Proposition D.16. Suppose that V is a Banach space, partially ordered by a solid,

closed cone V+ ⊆ V . For any β ∈ intV+, the translation

τβ : intV+ −→ intV+

x 7−→ x+ β

is nonexpansive with respect to the Thompson metric on intV+; that is,

d(τβ(x), τβ(y)) = d(x+ β, y + β) 6 d(x, y) , ∀x, y ∈ intV+ .

Furthermore, for any B ∈ intV+, the restriction of τβ to [0, B] ∩ intV+ is a strict

contraction; that is, there exists an L = L(β,B) ∈ [0, 1) such that

d(x+ β, y + β) 6 Ld(x, y) , ∀x, y ∈ intV+ ∩ [0, B] .

Proof. It follows from Lemmas D.5 and D.8 and intV+ is almost Archimedean. The

result then follows from [38, Theorem 2.6 on page 85].

In order to apply Banach’s Fixed Point Theorem, the only ingredient now missing

is completeness. The result below provides necessary and sufficient conditions for it to

happen.

Proposition D.17. Let V be a real Banach space which is partially ordered by a cone

V+ ⊆ V . Then each of the parts of V+ is complete with respect to the Thompson metric

if, and only if V+ is normal.

1Note that this is not true in general. The easiest class of examples to construct is to take x, y in
any nonzero part of V+ other than the interior and z in the interior. Thus x + z and y + z are in the
same part (they are both in intV+), but x, y, x+ z, y + z are not all in the same part.
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Proof. For a detailed conceptual approach, see [9, Theorem 4.20 on pages 34–35]. A

direct, elementary proof straight from the definitions can be pieced together using [24,

Theorem 2.1.1 on pages 27–30], [16, Definition 19.1 and Proposition 19.1 on pages 219–

220], [34, Theorem 4.7 and Inequality (4.12) on pages 42–43], and [9, Theorem 4.14 on

pages 30–32].

D.3 Cones of Nonnegative Functions

Let T be an arbitrary nonempty set, and consider the space (Rk)T of Rk-valued functions

on T . The positive orthant cone Rk>0 ⊆ Rk induces the cone (Rk)T+ := (Rk>0)T of

nonnegative functions in (Rk)T .

We introduce a couple of pieces of notation. Given any α = (α1, . . . , αk) and

u = (u1, . . . , uk) in (Rk)T , we define the Hadamard product α� u of α and u by

(α� u)j(t) := αj(t)uj(t) , t ∈ T , j = 1, . . . , k .

Note that the Hadamard product is bilinear. In particular,

u 7−→ α� u , u ∈ (Rk)T ,

is linear. If α > 0, then this map is also order preserving. For any α ∈ (Rk>0)T , we also

define their coordinatewise inverse α−1 : T → Rk ,

α−1(t) :=

(
1

α1(t)
, . . . ,

1

αk(t)

)
, t ∈ T .

The following lemma describes how these two operations interact with the Thompson

metric.

Lemma D.18. The Thompson metrics on the parts of (Rk>0)T satisfy the following two

properties.

(1) For any u, v and α in (Rk>0)T such that u and v are in the same part, α� u and

α� v are also in the same part, and

d(α� u, α� v) 6 d(u, v) .



180

(2) For any u, v ∈ (Rk>0)T which are in the same part of (Rk>0)T , we also have u−1

and v−1 in the same part, and

d(u−1, v−1) = d(u, v) .

Proof. (1) For any c > 1,

c−1u 6 v 6 cu ⇔ c−1uj 6 vj 6 cuj , j = 1, . . . , k ,

⇒ c−1αjuj 6 αjvj 6 cαjuj , j = 1, . . . , k ,

⇔ c−1(α� u) 6 (α� v) 6 c(α� u) .

This proves (1).

(2) Similarly, given c > 1, we have

c−1u 6 v 6 cu ⇔ c−1uj 6 vj 6 cuj , j = 1, . . . , k ,

⇔ cu−1
j > v

−1
j > c

−1u−1
j , j = 1, . . . , k ,

⇔ c−1u−1 6 v−1 6 cu−1 .

This proves (2).

Observe that u and u−1 need not be in the same part. For instance, if T := R>0 and

u ∈ (R>0)T is defined by

u(t) := 1 + t , t > 0 ,

then

u−1(t) =
1

1 + t
, ∀t > 0 .

Since u−1 is uniformly bounded in t ∈ R>0 and

c−1(1 + t) −→∞ as t→∞ ,

for any c > 1, we conclude that there is no such c for which

c−1u(t) 6 u−1(t) 6 cu(t) , ∀t > 0 .
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D.4 Tempered Paths

For the sake of convenience, we will refer to a measurable map B : R→Mn×k(R) as a

tempered path if it satisfies the following growth condition,

(L1′) for every δ > 0,

Kδ := sup
s∈R
‖B(s)‖ e−δ|s| <∞ .

In particular, B is locally essentially bounded. In fact, the natural analogues of all

properties of tempered random variables are still true for tempered paths in the sense

of (L1′) (refer to Lemma 2.32). So, in particular, the family Lθ(Mn×k(R)) of tempered

paths R→ Mn×k(R) is a vector space over the real scalars. Of course all of the above

can be also said about vector-valued paths R→ Rn upon identifying Rn with Mn×1(R).

We equip Mn×k(R) with the partial order induced by the nonnegative orthant cone; that

is, the cone of n× k real matrices having all their entries nonnegative. We then equip

Lθ(Mn×k(R)) with the partial order induced by the cone Lθ+(Mn×k(R)) of (Lebesgue-

almost surely) nonnegative paths in Mn×k(R).

Accordingly, we have the natural analogue of property (L2) in Example 3.34 for a

locally integrable matrix path A : R→Mn×n(R),

(L2′) there exist a λ > 0 and a tempered path γ : R→ R (in the sense of (L1′) above)

such that the fundamental matrix solution (see Example 3.2 also)

Ξ: R× R→Mn×n(R)

of the linear differential equation

ξ̇ = A(t)ξ , t ∈ R , (D.6)

satisfies

‖Ξ(s, s+ r)‖ 6 γ(s) e−λr , ∀s ∈ R , ∀r > 0 .

When we say ‘suppose that A satisfies (L2′),’ it is to be tacitly understood that Ξ has

the meaning described above.
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Lemma D.19. Let A : R → Mn×n(R) and B : R → Mn×k(R) be locally integrable

matrix paths satisfying (L1′) and (L2′). Suppose, in addition, that

(M1′) B is nonnegative; that is, Bij(t) > 0 for Lebesgue-almost every t ∈ R, for i =

1, . . . , n, j = 1, . . . , k, and

(M2′) all off-diagonal entries of A are nonnegative; that is, Aij(t) > 0 for Lebesgue-

almost every t ∈ R, for all i, j = 1, . . . , n such that i 6= j.

Then

[J ∗(u)](t) :=

∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ , t ∈ R , u ∈ Lθ(Rk) , (D.7)

defines an order-preserving, linear operator J ∗ : Lθ(Rk)→ Lθ(Rn). In particular,

J := J ∗
∣∣
Lθ+(Rk)

: Lθ+(Rk)→ Lθ+(Rn)

is sublinear, and thus nonnexpansive with respect to the Thompson metric.

Proof. We first show that, under (L1′) and (L2′), (D.7) defines a linear operator

J ∗ : Lθ(Rk) −→ Lθ(Rn) .

We then show that, under (M1′) and (M2′), we also have J ∗(Lθ+(Rk)) ⊆ Lθ+(Rn). Hence

J ∗ is order-preserving, and so J is well-defined and sublinear (see Remark D.12).

Fix arbitrarily u ∈ Lθ(Rk) and t ∈ R. Since Ξ(·, t) is continuous and B, u are

locally essentially bounded, the integrand in (D.7) is locally integrable. To show that

the integral ∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

converges, we apply (L2′), then (L1′). This yields

|Ξ(σ, t)B(σ)u(σ)| = γ(σ)‖B(σ)‖|u(σ)| e−λ|t−σ|

6 γ(σ)‖B(σ)‖|u(σ)| e−λ|σ| eλ|t|

6 K e−
λ
3
|σ| , ∀σ 6 0 ,

for some constant K > 0 comprising eλ|t| and the temperedness constants for γ and B,

with δ = λ/3.
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To see that the map J ∗(u) : R→ Rn so defined is a tempered path, pick any δ > 0,

and fix s ∈ R arbitrarily. Let m := min{λ, δ}. Then, for some constant K > 0

constructed as above, we have

e−δ|s| |[J ∗(u)](s)| = e−δ|s|
∣∣∣∣∫ s

−∞
Ξ(σ, s)B(σ)u(σ) dσ

∣∣∣∣
6

∫ s

−∞
γ(σ)‖B(σ)‖|u(σ)| e−δ|s|−λ|s−σ| dσ

6
∫ s

−∞
γ(σ)‖B(σ)‖|u(σ)| e−m|σ| dσ

6 K

∫ ∞
−∞

e−
m
3
|σ| dσ ,

which is finite and does not depend on s. This shows that J ∗(u) ∈ Lθ(Rn). It follows

straight from the linearity of the integral and matrix multiplication that J ∗ is also

linear.

Now assume that (M1′) and (M2′) hold in addition to (L1′) and (L2′). Then clearly

Bu ∈ Lθ+(Rn) for any u ∈ Lθ+(Rk). Now (M2′) is equivalent to the Kamke condition

for the linear equation (D.6). Therefore the flow of (D.6) is monotone with respect to

the positive-orthant cone-induced partial order (see [50, Chapter 3, Proposition 1.1 on

pages 32–33]). Thus

Ξ(σ, t)B(σ)u(σ) > 0

for Lebesgue-almost all σ 6 t, for every t ∈ R, for each u ∈ Lθ+(Rk), and so

[J ∗(u)](t) =

∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ > 0 , ∀t ∈ R ; (D.8)

in other words, J ∗(Lθ+(Rk)) ⊆ Lθ+(Rn). Since J ∗ is linear, this implies that it is also

order-preserving, as we pointed out in Remark D.12. In particular,

J := J ∗
∣∣
Lθ+(Rk)

: Lθ+(Rk) −→ Lθ+(Rn)

is sublinear (and order-preserving). It then follows from Lemma D.14 that J is nonex-

pansive with respect to the Thompson metric.

D.5 Conditions for Strict Contractiveness

Now consider the space L∞(Rn) of Borel-measurable, essentially bounded, vector-valued

functions R → Rn. Once again, we equip L∞(Rn) with the partial order induced



184

by the cone L∞+ (Rn) of nonnegative (Borel-measurable, essentially bounded) functions

R→ Rn>0.

Recall that L∞ is a Banach space when equipped with the norm ‖ · ‖L∞ , defined by

‖u‖L∞ := ess sup{|u(t)| ; t ∈M}

:= inf{K > 0 ; µ(|u| > K) = 0} , u ∈ L∞(M) .

Moreover, L∞+ (Rn) is a solid, normal cone. The interior intL∞+ (Rn) of L∞+ (Rn) is the

family of functions uniformly (essentially) bounded away from zero; that is, u belongs

to intL∞+ if, and only if there exists an ε = (ε1, . . . , εn) � 0 such that µ(u < ε) = 0.

For any u = (u1, . . . , un) ∈ intL∞+ , their coordinatewise inverse u−1 = (u−1
1 , . . . , u−1

k ) is

well-defined and also belongs to intL∞+ , since u is essentially bounded both away from

zero and from infinity.

Any path u ∈ L∞(Rn) has a representative which is bounded everywhere. Assume

without loss of generality that u is one such representative. Then indeed u ∈ Lθ(Rn).

Having this identification in mind, we may thus write L∞(Rn) ⊆ Lθ(Rn).

Lemma D.20. Suppose that A : R → Mn×n(R) and B : R → Mn×k(R) are locally

integrable matrix paths satisfying (L1′), (L2′), (M1′) and (M2′). Let

H : L∞+ (Rk) −→ L∞+ (Rk)

be defined by

[H(u)](t) :=

 αj(t)

βj(t) + gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ L∞+ (Rk), where

(i) α = (α1, . . . , αk) and β = (β1, . . . , βk) are in intL∞+ (Rk) ∩ C0(Rk), and

(ii) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, bounded, order-preserving and sub-

linear.

Then H(L∞+ (Rk)) ⊆ intL∞+ (Rk). Furthermore,

I := H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk) −→ intL∞+ (Rk)
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is a strict contraction with respect to the Thompson metric on intL∞+ (Rk); that is, there

exists an L ∈ [0, 1) such that

d(I(u), I(v)) 6 Ld(u, v) , ∀u, v ∈ intL∞+ (Rk) . (D.9)

Proof. First note that H is well-defined. Indeed, fix u ∈ L∞+ (Rk) arbitrarily. In view of

(L1′), (L2′), (M1′) and (M2′), it follows from (D.8) in the proof of Lemma D.19 that

[J (u)](t) =

∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ > 0 , ∀t ∈ R .

So the gj term in the denominator is well-defined. It then follows straight from (i) and

(ii) that H(u) is nonnegative and bounded coordinatewise. Moreover,

αj(t) > εj ,

βj(t) 6 Bj ,

and

0 6 gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)
6Mj

for every t ∈ R, for some εj > 0, Bj <∞ and Mj <∞, j ∈ {1, . . . , k}. Hence

(
[H(u)](t)

)
j
>

εj
Bj +Mj

> 0 , ∀t ∈ R , j ∈ {1, . . . , k} .

This shows that H(u) ∈ intL∞+ (Rk). Since u ∈ L∞+ (Rk) was chosen arbitrarily, we have

indeed H(L∞+ (Rk)) ⊆ intL∞+ (Rk), proving the first part of the result.

We now proceed to establish the strict contractiveness part of the result. Consider

the operator G : L∞+ (Rn)→ L∞+ (Rk), defined by

[G(ξ)](t) := g(ξ(t)) = (g1(ξ(t)), . . . , gk(ξ(t))) , t ∈ R , ξ ∈ L∞+ (Rn) .

Since g is nonnegative, continuous and bounded by hypothesis, G is well-defined. Note

that G is also sublinear and order-preserving. Observe that, by combining this with the

various pieces of notation introduced in the previous section, we may write

H(u) = α�
(
β + G

(
J (u)

))−1
, ∀u ∈ intL∞+ (Rk) .
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Now fix arbitrarily u, v ∈ intL∞+ (Rk). By the observation above and Lemma D.18,

we have

d(I(u), I(v)) = d(H(u),H(v))

= d
(
α�

(
β + G

(
J (u)

))−1
, α�

(
β + G

(
J (v)

))−1
)

6 d
((
β + G

(
J (u)

))−1
,
(
β + G

(
J (v)

))−1
)

= d
(
β + G

(
J (u)

)
, β + G

(
J (v)

))
.

Define M ∈ L∞+ (Rk) by

M(t) := (M1, . . . ,Mk) , t ∈ R .

By Proposition D.16, there exists an L := L(β/2, β/2 +M) ∈ [0, 1) such that

d(β/2 + x, β/2 + y) 6 Ld(x, y) , ∀x, y ∈ [β/2, β/2 +M ] ∩ intL∞+ (Rk) .

Since G(L∞+ (Rn)) ⊆ [0,M ], it follows that

d
(
β + G

(
J (u)

)
, β + G

(
J (v)

))
6 Ld

(
β/2 + G

(
J (u)

)
, β/2 + G

(
J (v)

))
Because G, J and

w 7−→ β/2 + w ∈ L∞+ (Rk) , w ∈ L∞+ (Rk) ,

are order-preserving and sublinear, it follows from Lemmas D.13 and D.14 that

d
(
β/2 + G

(
J (u)

)
, β/2 + G

(
J (v)

))
6 d(u, v) .

Combining all these inequalities we obtain

d(I(u), I(v)) 6 Ld(u, v) .

Since u, v ∈ intL∞+ (Rk) were chosen arbitrarily, this completes the proof that I is a

strict contraction with respect to the Thompson metric.

Lemma D.21. Assume the same hypotheses as in Lemma D.20, except for replacing

(i) and (ii) in that lemma by
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(i′) α = (α1, . . . , αk), α̃ = (α̃1, . . . , α̃k), β = (β1, . . . , βk) and β̃ = (β̃1, . . . , β̃k) are in

intL∞+ (Rk) ∩ C0(Rk), and satisfy

αj(t)

βj(t)
>
α̃j(t)

β̃j(t)
, ∀t ∈ R , j = 1, . . . , k , (D.10)

and

(ii′) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, order-preserving and sublinear.

Let H : L∞+ (Rk)→ L∞+ (Rk) be defined by

[H(u)](t) :=


αj(t) + α̃j(t)gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)
βj(t) + β̃j(t)gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ L∞+ (Rk). Then the same conclusions as in Lemma D.20 hold; that is,

H(L∞+ (Rk)) ⊆ intL∞+ (Rk), and I := H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk)→ intL∞+ (Rk) is a strict

contraction with respect to the Thompson metric on intL∞+ (Rk).

Proof. Fix arbitrarily u ∈ L∞+ (Rk). As in Lemma D.20, the hypotheses (L1′), (L2′),

(M1′) and (M2′) guarantee that the gj terms are well-defined. It follows from (i′)

and (ii′) that H(u) is nonnegative coordinatewise. Also by (i′) and (ii′), for each j ∈

{1, . . . , k}, there exist εj > 0, Bj <∞ and Mj <∞ such that

αj(t), α̃j(t), βj(t), β̃j(t) > εj , ∀t ∈ R ,

and

αj(t), α̃j(t), βj(t), β̃j(t) 6 Bj , ∀t ∈ R .

Thus

(
[H(u)](t)

)
j
6
Bj +Bjgj([J (u)](t))

εj + εjgj([J (u)](t))
6 max

r>0

Bj +Bjr

εj + εjr
<∞ , ∀t ∈ R .

This shows that H(u) is also bounded coordinatewise. Since u was chosen arbitrarily,

this establishes that H is well-defined. Moreover,

(
[H(u)](t)

)
j
>

εj + εjgj([J (u)](t))

Bj +Bgj([J (u)](t))
> min

r>0

εj + εjr

Bj +Bjr
> 0 , ∀t ∈ R .
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So we also have H(L∞+ (Rk)) ⊆ intL∞+ (Rk).

For the strict contractiveness part of the result, we first note that we may rewrite

αj(t) + α̃j(t)gj([J (u)](t))

βj(t) + β̃j(t)gj([J (u)](t))
≡ cj(t) +

ej(t)

fj(t) + gj([J (u)](t))
,

where

cj :=
α̃j

β̃j
, ej :=

α̃j

β̃j

(
αj
α̃j
− βj

β̃j

)
, and fj :=

βj

β̃j
,

for each j ∈ {1, . . . , k}. Observe that c, f � 0, and e > 0. Now setting

c := (c1, . . . , ck) , e := (e1, . . . , ek) , and f := (f1, . . . , fk) ,

we may rewrite

H(u) = c+ e�
(
f + G

(
J (u)

))−1
, ∀u ∈ intL∞+ (Rk) .

So for any u, v ∈ intL∞+ (Rk), we have

d(I(u), I(v)) = d(H(u),H(v))

6 Ld
(
c/2 + e�

(
f + G

(
J (u)

))−1
, c/2 + e�

(
f + G

(
J (v)

))−1
)

6 Ld
(
e�

(
f + G

(
J (u)

))−1
, e�

(
f + G

(
J (v)

))−1
)

6 Ld
((
f + G

(
J (u)

))−1
,
(
f + G

(
J (v)

))−1
)

= Ld
(
f + G

(
J (u)

)
, f + G

(
J (v)

))
6 Ld

(
G
(
J (u)

)
,G
(
J (v)

))
6 Ld (u, v) .

In the above the first inequality follows from Proposition D.16, with

L := L(c/2, c/2 +M ′) < 1 ,

constructed as in the proof of Lemma D.20 with

M ′(t) :=

(
ess supt∈R |e1(t)|
ess inft∈R |f1(t)|

, . . . ,
ess supt∈R |ek(t)|
ess inft∈R |fk(t)|

)
, t ∈ R ,

the second and fourth inequalities follow from Lemma D.9. The third inequality and the

subsequent equality follow from Lemma D.18. The last inequalities follow from Lemmas

D.19, D.13 and D.14. This shows that I = H
∣∣
intL∞+ (Rk)

is a strict contraction.
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D.6 Unique, Globally Attracting Equilibria

Lemma D.22. Under the same hypotheses as in either Lemma D.20 or Lemma D.21,

the discrete dynamical system on intL∞+ (Rk) generated by the difference equation

u+ = H(u) (D.11)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) with respect to the

Thompson metric on the part intL∞+ (Rk).

Proof. It follows from Lemma D.15 that intL∞+ (Rk) is a part. Since L∞(Rk) is a Banach

space and L∞+ (Rk) is a normal cone, the Thompson metric on intL∞+ (Rk) is complete

by Proposition D.17.

Under the hypotheses of either Lemma D.20 or Lemma D.21,

H(intL∞(Rk)) ⊆ H(L∞(Rk)) ⊆ intL∞(Rk) ,

and H is a strict contraction (with respect to the Thompson metric) on intL∞+ (Rk).

Therefore H has a unique, globally attracting fixed point u∞ ∈ intL∞(Rk) by the

Banach Fixed Point Theorem.

Proposition D.23. Suppose that A : R→Mn×n(R) and B : R→Mn×k(R) are locally

integrable matrix paths satisfying (L1′), (L2′), (M1′) and (M2′). Let

H : Lθ+(Rk) −→ Lθ+(Rk)

be defined by

[H(u)](t) :=

 αj(t)

βj(t) + gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ Lθ+(Rk), where

(i) α = (α1, . . . , αk) and β = (β1, . . . , βk) are in intL∞+ (Rk) ∩ C0(Rk), and

(ii) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, bounded, order-preserving and sub-

linear.
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Then the discrete dynamical system on Lθ+(Rk) generated by the difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of almost-everywhere, pointwise convergence. Furthermore, the representative u∞ can

be chosen to be continuous, in which case convergence is actually everywhere; that is,

[Hk(u)](t) −→ u∞(t) as k →∞ , ∀t ∈ R , ∀u ∈ Lθ+(Rk) .

Proof. As in the proof of Lemma D.20, the assumptions imply that H(u) is in fact

bounded coordinatewise for each u ∈ Lθ+(Rk). Therefore

H(Lθ+(Rk)) ⊆ L∞+ (Rk) ⊆ Lθ(Rk) .

Again by Lemma D.20, we also have

H(L∞+ (Rk)) ⊆ intL∞+ (Rk) ,

so indeed

H2(Lθ+(Rk)) ⊆ intL∞+ (Rk) .

By Lemma D.22, H
∣∣
intL∞+ (Rk)

has a unique, globally attracting fixed point u∞ with

respect to the Thompson metric.

Fix u ∈ Lθ+(Rk) arbitrarily, and let

uk := Hk(u) , k = 0, 1, 2, . . . .

Then

uk ∈ intL∞+ (Rk) , k = 2, 3, 4, . . . .

Moreover,

d(uk, u∞) −→ 0 , as k →∞ ,

since u∞ is the unique, globally attracting fixed point of H
∣∣
intL∞+ (Rk)

with respect to

the Thompson metric. Now

e−d(uk,u∞) u∞ 6 uk 6 ed(uk,u∞) u∞ , k = 2, 3, 4, . . . , .
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Thus by the triangle inequality, and by normality,

‖uk − u∞‖∞ 6 ‖uk − e−d(uk,u∞) u∞‖∞ + ‖ e−d(uk,u∞) u∞ − u∞‖∞

6 1 · ‖(ed(uk,u∞)− e−d(uk,u∞))u∞‖∞ + ‖(e−d(uk,u∞)−1)u∞‖∞

6 (| ed(uk,u∞)− e−d(uk,u∞) |+ | e−d(uk,u∞)−1|)‖u‖∞

→ 0 , as k →∞ .

In particular, (uk)k∈N is a Cauchy sequence. Furthermore, uk is continuous for each

k ∈ N, since α, β, g are continuous by hypothesis and J (u) is continuous for each

u ∈ Lθ+(R). Thus indeed (uk)k∈N converges uniformly to a continuous function which

is equal to u∞ in the sense of L∞.

Proposition D.24. Assume the same hypotheses as in Proposition D.23, except for

replacing (i) and (ii) in that proposition by

(i′) α = (α1, . . . , αk), α̃ = (α̃1, . . . , α̃k), β = (β1, . . . , βk) and β̃ = (β̃1, . . . , β̃k) are in

intL∞+ (Rk) ∩ C0(Rk), and satisfy

αj(t)

βj(t)
>
α̃j(t)

β̃j(t)
, ∀t ∈ R , j = 1, . . . , k , (D.12)

and

(ii′) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, order-preserving and sublinear,

and let H : Lθ+(Rk)→ Lθ+(Rk) be defined by

[H(u)](t) :=


αj(t) + α̃j(t)gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)
βj(t) + β̃j(t)gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ Lθ+(Rk). Then the discrete dynamical system on Lθ+(Rk) generated by the

difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of almost-everywhere, pointwise convergence. Furthermore, the representative u∞ can
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be chosen to be continuous, in which case convergence is actually everywhere; that is,

[Hk(u)](t) −→ u∞(t) as k →∞ , ∀t ∈ R , ∀u ∈ Lθ+(Rk) .

Proof. The proof is the same as in Proposition D.23. We have

H2(Lθ+(Rk)) ⊆ intL∞+ (Rk)

by Lemma D.21, and H
∣∣
intL∞+ (Rk)

has a unique, globally attracting fixed point u∞ (with

respect to the Thompson metric) by Lemma D.22. It then follows as in the proof of

Proposition D.23 that (Hk(u))k∈N is a Cauchy sequence in L∞+ (Rk), each term of which

is continuous. This establishes the uniform convergence to a continuous function which

is almost everywhere equal to u∞.

D.7 The Periodic Case

Lemma D.25. Suppose that A : R→Mn×n(R) is a locally integrable, T -periodic matrix

path satisfying (L2′). Then the map

t 7−→
∫ t

−∞
Ξ(σ, t) dσ , t ∈ R , (D.13)

is T -periodic. In particular, it is uniformly bounded away from infinity; in other words,

there exist P > 0 such that∥∥∥∥∫ t

−∞
Ξ(σ, t) dσ

∥∥∥∥ 6 P <∞ , ∀t ∈ R . (D.14)

Proof. Convergence of the integral for each t ∈ R follows from the same estimates as

in Lemma D.19. To establish periodicity, first note that, since A is T -periodic,

d

dt
Ξ(σ + T, t+ T ) = A(t+ T )Ξ(σ + T, t+ T )

= A(t)Ξ(σ + T, t+ T ) , ∀σ, t ∈ R .

Since

Ξ(σ + T, σ + T ) = In ,

it then follows by uniqueness that

Ξ(σ + T, t+ T ) ≡ Ξ(σ, t) .
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Now a simple change of variables yields∫ t+T

−∞
Ξ(σ, t+ T ) dσ ≡

∫ t

−∞
Ξ(σ + T, t+ T ) dσ ≡

∫ t

−∞
Ξ(σ, t) dσ .

This shows that the map defined in (D.13) is T -periodic. Since the map is also con-

tinuous, the estimate in (D.14) hold on [0, T ] for some P > 0. It then holds along the

whole line by periodicity.

Lemma D.26. Assume the same hypotheses as in Lemma D.20, except that g is not

necessarily bounded, but with the additional hypotheses that the matrix paths A and B

are T -periodic. Let H : L∞+ (Rk)→ L∞+ (Rk) be defined by

[H(u)](t) :=

 αj(t)

βj(t) + gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ L∞+ (Rk). Then H(L∞+ (Rk)) ⊆ intL∞+ (Rk), and

I := H
∣∣
intL∞+ (Rk)

◦ H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk) −→ intL∞+ (Rk)

is a strict contraction with respect to the Thompson metric on intL∞+ (Rk).

Proof. By temperedness, B is locally bounded. It then follows from periodicity that B

is globally bounded. Now for any u ∈ L∞+ (Rk), we have

|[J (u)](t)| =
∣∣∣∣∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

∣∣∣∣ 6 P‖B‖∞‖u‖∞ , ∀t ∈ R ,

where P > 0 is given by Lemma D.25. Since gj is continuous, it follows that there

exists an Mj,u > 0 such that

gj([J (u)](t)) 6Mj,u , ∀t ∈ R , j = 1, . . . , k .

Thus (
[H(u)](t)

)
j
>

εj
Bj +Mj,u

> 0 , ∀t ∈ R , j = 1, . . . , k ,

where the εj ’s and Bj ’s are defined as in the proof of Lemma D.20. This proves that

H(u) ∈ intL∞+ (Rk). Since u ∈ L∞+ (Rk) was chosen arbitrarily, we conclude that in fact

H(L∞+ (Rk)) ⊆ intL∞+ (Rk).
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By decreasing the values of the εj ’s and increasing the values of the Bj ’s, if necessary,

we may assume without loss of generality that

αj(t) 6 Bj , ∀t ∈ R , j = 1, . . . , k ,

and

βj(t) > εj , ∀t ∈ R , j = 1, . . . , k .

Therefore

(
[H(u)](t)

)
j
6
Bj
εj
, ∀t ∈ R , j = 1, . . . , k , ∀u ∈ L∞+ (Rk) ,

and so H(L∞+ (Rk)) ⊆ [0,M ], where M ∈ intL∞(Rk) is defined by

M(t) :=

(
B1

ε1
, . . . ,

Bk
εk

)
, t ∈ R .

Fix arbitrarily u, v ∈ intL∞(Rk). It follows as in the computations in the proof of

Lemma D.20 that

d(I(u), I(v)) = d(H2(u),H2(v))

= d

(
α�

(
β + G

(
J (H(u))

))−1
, α�

(
β + G

(
J (H(v))

))−1
)

6 d
(
β + G

(
J (H(u))

)
, β + G

(
J (H(v))

))
6 Ld

(
β/2 + G

(
J (H(u))

)
, β/2 + G

(
J (H(v))

))
6 Ld (H(u),H(v))

= Ld
(
α�

(
β + G(J (u))

)−1
, α�

(
β + G(J (v))

)−1
)

6 Ld (u, v) ,

where

L := L(β/2, β/2 +M)

is given by Proposition D.16. Since u, v ∈ intL∞(Rk) were chosen arbitrarily, this

completes the proof of the result.
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Corollary D.27. The discrete dynamical system on intL∞+ (Rk) generated by the dif-

ference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) with respect to the

Thompson metric on the part intL∞+ (Rk).

Proof. For H2 is a strict contraction on a complete metric space (see proof of Lemma

D.22 also).

Proposition D.28. Assume the same hypotheses as in Proposition D.23, except that

g is not necessarily bounded, but with the additional hypotheses that the matrix paths A

and B are T -periodic. Let H : Lθ+(Rk)→ Lθ+(Rk) be defined by

[H(u)](t) :=

 αj(t)

βj(t) + gj

(∫ t

−∞
Ξ(σ, t)B(σ)u(σ) dσ

)

k

j=1

, t ∈ R ,

for each u ∈ Lθ+(Rk). Then the discrete dynamical system on Lθ+(Rk) generated by the

difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of almost-everywhere, pointwise convergence. Furthermore, the representative u∞ can

be chosen to be continuous, in which case convergence is actually everywhere; that is,

[Hk(u)](t) −→ u∞(t) as k →∞ , ∀t ∈ R , ∀u ∈ Lθ+(Rk) .

Proof. We have

H(Lθ+(Rk)) ⊆ L∞+ (Rk) ,

as in the proof of Proposition D.23, and

H(L∞+ (Rk)) ⊆ intL∞+ (Rk) ,

by Lemma D.26. Therefore

H2(L∞+ (Rk)) ⊆ intL∞+ (Rk) .
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From Corollary D.27, H
∣∣
intL∞+ (Rk)

has a unique, globally attracting fixed point u∞ (with

respect to the Thompson metric). It then follows as in the proof of Proposition D.23

that (Hk(u))k∈N is a Cauchy sequence in L∞+ (Rk), each term of which is a continuous

path. This establishes the uniform convergence of (Hk(u))k∈N to a continuous function

which is equal almost everywhere to u∞.

D.8 Discrete Time

The discussion in Sections D.4–D.7 above has a natural discrete-time counterpart. The

proofs follow along the same lines, and so we omit most of the details.

D.8.1 Tempered Paths

We begin by establishing the appropriate analogue of Lemma D.19. A map

B : Z −→Mn×k(R)

will be said to be a (discrete ) tempered path if

(l1′) for every δ > 0,

Kδ := sup
s∈Z
‖B(s)‖ e−δ|s| <∞ .

As long as there is no risk of confusion, we will also denote the family of (discrete)

tempered paths Z→Mn×k(R) by Lθ(Mn×k(R)). We continue to equip Mn×k(R) with

the partial order induced by the nonnegative orthant cone, and thus equip Lθ(Mn×k(R))

with the partial order induced by the cone Lθ+(Mn×k(R)) of nonnegative tempered paths

Z→Mn×k(R>0).

Given a matrix path A : Z→Mn×n(R), we define Ξ: D→Mn×n(R) by

Ξ(s, s+ r) :=

s+r−1∏
j=s

A(j) , (s, s+ r) ∈ D , (D.15)

where

D := {(s, s+ r) ; s ∈ Z and r ∈ Z>0} ,
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and with the notational convention that

Ξ(s, s) =

s−1∏
j=s

A(j) := In , s ∈ Z . (D.16)

We will be interested in matrix paths A : Z→Mn×n(R) for which

(l2′) there exist a λ ∈ (0, 1) and a nonnegative tempered function γ : Z → R (in the

sense of (l1′) with n = k = 1) such that

‖Ξ(s, s+ r)‖ 6 γ(s)λr , ∀s ∈ Z , ∀r ∈ Z>0 . (D.17)

Of course this is equivalent to say that there exist a λ > 0 and a nonnegative tempered

function γ : Z→ R such that

‖Ξ(s, s+ r)‖ 6 γ(s) e−λr , ∀s ∈ Z , ∀r ∈ Z>0 .

Thus (l2′) is indeed the natural discrete-time analogue of (L2′). However it is much

more convenient, in this discrete-time context, to carry out the computations using the

form (D.17) of the estimate.

Lemma D.29. Let A : Z → Mn×n(R) and B : Z → Mn×k(R) be nonnegative matrix

paths satisfying (l1′) and (l2′)—that is, Aij(m) > 0 for every m ∈ Z, for i, j = 1, . . . , n,

and analogously for B. Then

[J ∗(u)](m) :=

m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j) , m ∈ Z , u ∈ Lθ(Rk) ,

defines an order-preserving, linear operator J ∗ : Lθ(Rk)→ Lθ(Rn). In particular,

J := J ∗
∣∣
Lθ+(Rk)

: Lθ+(Rk)→ Lθ+(Rn)

is sublinear, and thus nonexpansive with respect to the Thompson metric.

Proof. Analogous to the proof of Lemma D.19. The series converges by comparison

with the geometric series in virtue of (l2′) and temperedness. (See also the proof of

Lemma D.35 below.)
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D.8.2 Conditions for Strict Contractiveness

Now let L∞(Rn) denote the space of bounded, vector-valued two-sided sequences

Z −→ Rn .

Again, equip L∞(Rn) with the partial order induced by the cone L∞+ (Rn) of nonnegative,

bounded two-sided sequences Z → Rn>0. Recall that L∞(Rn) is a Banach space when

equipped with the norm ‖ · ‖L∞ , defined by

‖u‖L∞ := sup
s∈Z
|u(s)| , u ∈ L∞(Rn) .

Moreover, L∞+ (Rn) is a solid, normal cone. The interior intL∞+ (Rn) of L∞+ (Rn) is

the family of two-sided sequences Z → Rn>0 which are uniformly bounded away from

zero and infinity—that is, u = (u1, . . . , un) ∈ intL∞+ (Rn) if, and only if there exist

ε = (ε1, . . . , εn)� 0 andM = (M1, . . . ,Mn) such that εi 6 ui(m) 6Mi for everym ∈ Z,

for i = 1, . . . , n. Finally, given u = (u1, . . . , un) ∈ intL∞+ (Rn), their coordinatewise

inverse u−1 = (u−1
1 , . . . , u−1

n ) is well-defined and also belongs to intL∞+ (Rn).

Lemma D.30. Suppose that A : Z→Mn×n(R) and B : Z→Mn×k(R) are nonnegative

matrix paths satisfying (l1′) and (l2′). Let H : L∞+ (Rk)→ L∞+ (Rk) be defined by

[H(u)](m) :=


αi(m)

βi(m) + gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,

for each u ∈ L∞+ (Rk), where

(i) α = (α1, . . . , αk) and β = (β1, . . . , βk) are in intL∞+ (Rk), and

(ii) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, bounded, order-preserving and sub-

linear.

Then H(L∞+ (Rk)) ⊆ intL∞+ (Rk). Furthermore,

I := H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk) −→ intL∞+ (Rk)
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is a strict contraction with respect to the Thompson metric on intL∞+ (Rk); that is, there

exists an L ∈ [0, 1) such that

d(I(u), I(v)) 6 Ld(u, v) , ∀u, v ∈ intL∞+ (Rk) . (D.18)

Proof. Analogous to the proof of Lemma D.20.

Lemma D.31. Assume the same hypotheses as in Lemma D.30, except for replacing

(i) and (ii) in that lemma by

(i′) α = (α1, . . . , αk), α̃ = (α̃1, . . . , α̃k), β = (β1, . . . , βk) and β̃ = (β̃1, . . . , β̃k) are in

intL∞+ (Rk), and satisfy

αi(m)

βi(m)
>
α̃i(m)

β̃i(m)
, ∀m ∈ Z , i = 1, . . . , k , (D.19)

and

(ii′) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, order-preserving and sublinear,

and let H : L∞+ (Rk)→ L∞+ (Rk) be defined by

[H(u)](m) :=


αi(m) + α̃i(m)gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)


βi(m) + β̃i(m)gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,

for each u ∈ L∞+ (Rk). Then the same conclusions as in Lemma D.30 hold; that is,

H(L∞+ (Rk)) ⊆ intL∞+ (Rk), and I := H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk)→ intL∞+ (Rk) is a strict

contraction with respect to the Thompson metric on intL∞+ (Rk).

Proof. Analogous to the proof of Lemma D.21.

D.8.3 Unique, Globally Attracting Equilibria

Lemma D.32. Under the same hypotheses as in either Lemma D.30 or Lemma D.31,

the discrete dynamical system on intL∞+ (Rk) generated by the difference equation

u+ = H(u) (D.20)
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has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) with respect to the

Thompson metric on the part intL∞+ (Rk).

Proof. Analogous to the proof of Lemma D.22.

Proposition D.33. Suppose that A : Z → Mn×n(R) and B : Z → Mn×k(R) are non-

negative matrix paths satisfying (l1′) and (l2′). Let H : Lθ+(Rk) → Lθ+(Rk) be defined

by

[H(u)](m) :=


αi(m)

βi(m) + gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,

for each u ∈ Lθ+(Rk), where

(i) α = (α1, . . . , αk) and β = (β1, . . . , βk) are in intL∞+ (Rk), and

(ii) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, bounded, order-preserving and sub-

linear.

Then the discrete dynamical system on Lθ+(Rk) generated by the difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of pointwise convergence.

Proof. This follows along the same lines as the proof of Proposition D.23. Note that,

in the discrete-time case, we need not worry about the continuity2 of u∞. Pointwise

convergence follows straight from

|uk(m)− u∞(m)| 6 ‖uk − u∞‖L∞ −→ 0 as k →∞

for each m ∈ Z.

2More precisely, u∞ is automatically continuous, since the standard topology on Z is discrete.
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Proposition D.34. Assume the same hypotheses as in Proposition D.33, except for

replacing (i) and (ii) in that proposition by

(i′) α = (α1, . . . , αk), α̃ = (α̃1, . . . , α̃k), β = (β1, . . . , βk) and β̃ = (β̃1, . . . , β̃k) are in

intL∞+ (Rk), and satisfy

αi(m)

βi(m)
>
α̃i(m)

β̃i(m)
, ∀m ∈ Z , i = 1, . . . , k , (D.21)

and

(ii′) g = (g1, . . . , gk) : Rn>0 → Rk>0 is continuous, order-preserving and sublinear,

and let H : Lθ+(Rk)→ Lθ+(Rk) be defined by

[H(u)](m) :=


αi(m) + α̃i(m)gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)


βi(m) + β̃i(m)gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,

for each u ∈ Lθ+(Rk). Then the discrete dynamical system on Lθ+(Rk) generated by the

difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of pointwise convergence.

Proof. Analogous to the proof of Proposition D.24.

D.8.4 The Periodic Case

As in the continuous-time case, the boundedness assumption for g in Proposition D.33

is not needed if A and B are T -periodic.

Lemma D.35. Suppose that A : Z → Mn×n(R) is a T -periodic matrix path satisfying

(l2′). Then the map

m 7−→
m−1∑
j=−∞

Ξ(j + 1,m) , m ∈ Z , (D.22)
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is T -periodic. In particular, it is uniformly bounded away from infinity; in other words,

there exists a P > 0 such that∥∥∥∥∥∥
m−1∑
j=−∞

Ξ(j + 1,m)

∥∥∥∥∥∥ 6 P <∞ , ∀m ∈ Z . (D.23)

Proof. The convergence of the series for each fixed m ∈ Z follows from the estimate in

(l2′) and the definition of temperedness in (l1′). For some λ ∈ (0, 1), we have∣∣∣∣∣∣
m−1∑
j=−∞

Ξ(j + 1,m)

∣∣∣∣∣∣ 6
m−1∑
j=−∞

γ(j + 1)λm−j−1

6 λ|m|
m−1∑
j=−∞

γ(j + 1)λ
1
2
|j+1|λ

1
2
|j+1|

6 λ|m|Kδ

m−1∑
j=−∞

(
λ

1
2

)|j+1|
,

with

δ := −1

2
log λ > 0

in the temperedness constant of γ. Thus the series in (D.22) converges by comparison

with the geometric series.

To establish T -periodicity, recall the definition of Ξ in (D.15) and (D.16). We have

m+T−1∑
j=−∞

Ξ(j + 1,m+ T ) =
m+T−1∑
j=−∞

m+T−1∏
k=j+1

A(k)


=

m−1∑
̂=−∞

 m+T−1∏
k=̂+T+1

A(k)


=

m−1∑
̂=−∞

 m−1∏
k̂=̂+1

A(k + T )


=

m−1∑
j=−∞

 m−1∏
k=j+1

A(k)


=

m−1∑
j=−∞

Ξ(j + 1,m) , ∀m ∈ Z ,

thus establishing that the map defined in (D.22) is T -periodic.

The fact that there exists a P > 0 such that (D.23) holds now follows from the simple

observation that the map defined by (D.22) only takes up finitely many values.
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Lemma D.36. Assume the same hypotheses as in Lemma D.30, except that g is not

necessarily bounded, but with the additional hypotheses that the matrix paths A and B

be T -periodic. Let H : L∞+ (Rk)→ L∞+ (Rk) be defined by

[H(u)](m) :=


αi(m)

βi(m) + gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,

for each u ∈ L∞+ (Rk). Then H(L∞+ (Rk)) ⊆ intL∞+ (Rk), and

I := H
∣∣
intL∞+ (Rk)

◦ H
∣∣
intL∞+ (Rk)

: intL∞+ (Rk) −→ intL∞+ (Rk)

is a strict contraction with respect to the Thompson metric on intL∞+ (Rk).

Proof. Analogous to the proof of Lemma D.26. For each arbitrarily fixed u ∈ L∞+ (Rk)

and i ∈ {1, . . . , k}, we can use Lemma D.35 and the continuity of gi to show that

m 7−→ gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)

 , m ∈ Z ,

is bounded.

Corollary D.37. The discrete dynamical system on intL∞+ (Rk) generated by the dif-

ference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) with respect to the

Thompson metric on the part intL∞+ (Rk).

Proof. Analogous to the proof of Lemma D.22.

Proposition D.38. Assume the same hypotheses as in Proposition D.33, except that

g is not necessarily bounded, but with the additional hypotheses that the matrix paths A

and B are T -periodic. Let H : Lθ+(Rk)→ Lθ+(Rk) be defined by

[H(u)](m) :=


αi(m)

βi(m) + gi

 m−1∑
j=−∞

Ξ(j + 1,m)B(j)u(j)





k

i=1

, m ∈ Z ,
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for each u ∈ Lθ+(Rk). Then the discrete dynamical system on Lθ+(Rk) generated by the

difference equation

u+ = H(u)

has a unique, globally attracting equilibrium u∞ ∈ intL∞+ (Rk) ⊆ Lθ+(Rk) in the sense

of pointwise convergence.

Proof. Analogous to the proof of Proposition D.28.
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Boston, Boston, MA, 1992.

[6] Michael Barnsley. Fractals everywhere. Academic Press, Inc., Boston, MA, 1988.

[7] Robert G. Bartle. The elements of integration and Lebesgue measure. Wiley
Classics Library. John Wiley & Sons, Inc., New York, 1995. Containing a corrected
reprint of the 1966 original [ıt The elements of integration, Wiley, New York;
MR0200398 (34 #293)], A Wiley-Interscience Publication.

[8] Igor Chueshov. Monotone random systems theory and applications, volume 1779
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
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